EFFECTS OF INLET CLOSURE LEVEL ON VIBRATION CHARACTERISTICS OF A MODIFIED CENTRIFUGAL FAN

Authors

  • Zaimar Zaimar Department Agro Industry, Agricultural Polytechnic of Pangkep State, 90655 Pangkep, South Sulawesi, Indonesia
  • Mursalim Mursalim Department Agricultural Engineering, Hasanuddin University, 90245 Makassar, Indonesia
  • Hammada Abbas Department Mechanical Engineering, Hasanuddin University, 92173 Gowa, Indonesia
  • Supratomo Supratomo Department Agricultural Engineering, Hasanuddin University, 90245 Makassar, Indonesia

DOI:

https://doi.org/10.11113/jt.v80.12170

Keywords:

Centrifugal fan, inlet closure, high turbulence, resonance frequency, vibration characteristic

Abstract

Inlet is one of the key parameters that plays an important role in a centrifugal fan. The change of parameters in an inlet can cause static and dynamic pressures in the fan housing. As a consequence, high turbulence can produce vibration. The aim of this research is to study the inlet closure level effects on the vibration characteristics of a modified centrifugal fan. The Inlet closure levels consist of 0; 25; 50; 75; 85; 100% that were tested to examine the vibration characteristic value (x, m, k, Ck, C). The test used a randomized complete design with full factorial experiment. Data analysis employed variance and regression analysis. The results show that the inlet closure effect is significant to the value of the vibration characteristics. The increase of the inlet closure level can cause the quadratic decrease of the values of the vibration characteristics. In addition, the increase of the inlet closure level had no impact on the applied resonance frequency levels. These experimental results obtained the highest values of the vibration characteristic at the inlet closure level of 25%.

 

References

Dadhich, M., Jain, S. K., Sharma, V., Sharma, S. K. and Agarwal, D. 2015. Fatigue (FEA) and Modal Analysis a Centrifugal Fan. International Journal of Recent Advances in Mechanical Engineering. 4(2): 7791.

DOI: https://doi.org/10.14810/ijmech.2015.4209.

Kumar, P. N. and Robinson, S. S. 2014. Design Optimization of Backward Inclined Radial Blade Impeller Using ANSYS. International Journal of Engineering Development and Research. 2(1): 404-409.

Thangarasu, S., Sureshkannan, G. and Dhandapani, N. V. 2015. Design and Experimental Investigation of Forward Curved, Backward Curved and Radial Blade Impellers of Centrifugal Blower. Australian Journal of Basic and Applied Sciences. 9(1): 71-75.

Oyelami, A. T., Adejuyigbe, S. B., Waheed, M. A., and Ogunkoya, A. K. 2012. Analysis of Radial-Flow Impellers of Different Configurations. The Pacific Journal of Science and Technology. 13(1): 24-33.

Rusiński, E., Moczko, P., Odyjas, P. and Pietrusiak, D. 2014. Investigation of Vibrations of a Main Centrifugal Fan Used in Mine Ventilation. Archives of Civil and Mechanical Engineering. http://www.elsevier.com/locate/acme.

Gholamian, M., Rao, G. K. M. and Bhramara, P. 2010. Effect of Inlet on Efficiency and Flow Pattern in Centrifugal Fan Using CFD Analysis and Experimental Validation. Journal of Recent Advances in Robotics, Aeronautical and Mechanical Engineering. 37-44.

Rameshkumar, G. R., Rao, B. V. A. and Ramachandran, K. P. 2010. Condition Monitoring of Forward Curved Centrifugal Blower Using Coast Down Time Analysis. International Journal of Rotating Machinery. 2010.

DOI: http://doi.org/10.1155/2010/962804.

NYB (New York Blower). 2011. Fan Balance and Vibration. Engineering Letter. The New York Blower Company, 7660 Quincy Street, Willowbrook, Illinois. Retrieved from http://www.nyb.com/pdf/Catalog/Letters/EL-13.pdf.

Vierck, R. K. 1995. Analysis of Vibration. Translation by Dr. Ir. Dicky Rezaldy Munaf, MS.CE, PT. Eresco Publishing, Bandung.

Mažeika, P., Grigonienė, J. and Senulis, A. 2009. Influence of Foundation Stiffness on Vibrations of Rotor Systems. ULTRAGARSAS (ULTRASOUND). 64(2): 27-31.

Xu, C., Amano, R. S. and Lee, E. K. 2004. Investigation of an Axial Fan-Blade Stress and Vibration Due to Aerodynamic Pressure Field and Centrifugal Effects. JSME International Journal. 47(1): 75-90.

DOI: https://doi.org/10.1299/jsmeb.47.75

Dileep, N., Anusha, K., Satyaprathik, C., Kartheek, B. and Ravikumar, K. 2013. Condition Monitoring of FD-FAN Using Vibration Analysis. International Journal of Emerging Technology and Advanced Engineering. 3(1): 170-185.

Kesler, J. D. 2014. Centrifugal Fan Using Vibration Analysis to Detect Problems. Technical Associates of Charlotte. 1-3. http://www.technicalassociates.net.

Khelladi, S., Kouidri, S., Bakir, F. and Rey, R. 2005. Flow Study in the Impeller-Diffuser Interface of a Vane Centrifugal Fan. ASME Journal of Fluid Engineering. 127: 495-502.

DOI: https://doi.org/10.1115/1.1900138.

Datong, Q., Yijun, M., Xiaoliang, L. and Minjian, Y. 2009. Experimental Study on the Noise Reduction of Industrial Forward-Curved Blades Centrifugal Fan. Applied Acoustics. 70: 1041-1050.

DOI: https://doi.org/10.1016/j.apacoust.2009.03.002.

Wolfram, D. and Carolus, T. 2010. Experimental and Numerical Investigation of the Unsteady Flow Field and Fone Generation in an Isolated Centrifugal Fan Impeller. Journal of Sound and Vibration. 329: 4380-4397.

DOI: https://doi.org/10.1016/j.jsv.2010.04.034.

Kumar, C. R. and Pujari, S. 2015. Condition Monitoring and Dynamic Balancing of a Hot Air Circulation Blower by Vibration Tools. International Journal of Engineering Sciences & Research Technology. 5(3): 40-49.

Mappaita, A. 2005. Mechanical Vibration. The Practical Book. Department of Mechanical Engineering, Hasanuddin University, Makassar, Indonesia.

Karyasa, T. B. 2011. Fundamentals of Mechanical Vibration. CV. Andi Offset Publishing, Jogyakarta, Indonesia.

Leso, N., Puttonen, J. and Porkka, E. 2011. The Effect of Foundation on Fan Vibration Response. Rakenteiden Mekaniikka (Journal of Structural Mechanics). 44(1): 1-20.

Landau, S. and Everitt, B. S. 2004. Statistical Analyses Using SPSS. Chapman & Hall/CRC Press LLC, New York.

Jayatun, Y. A. and Subagio, 2004. Dynamic Characteristic of Air Suspension. Journal of "TEKNOSAINS", Post Graduated of UGM, Jogyakarta. 17(1): 69-85.

Zaimar, Mursalim, Abbas, H. and Supratomo, 2017. Performance Testing of a Modified Centrifugal Fan with Serrated Blade Impeller. International Journal of Scientific and Technology Research. 6(10): 122-125.

Pittard, M. T., Evan, R. P., Maynes, R. D. and Blotter, J. D. 2004. Experimental and Numerical Investigation of Turbulent Flow Induced Pipe Vibration in Fully Develop Flow. Review of Scientific Instruments. 75(4): 2383-2401.

Arief, S. and Abbas, H. 2012. Vibration Analysis of Steel Plate of Joint Variation. Proceeding in National Seminar Yearly of Mechanical Engineering-XI, 16-17th October, 2012. Gadjah Mada University, Jogyakarta.

Czmochowski, J., Moczko, P., Odyjas, P. and Pietrusiak, D., 2014. Test of Rotary Machines Vibrations in Steady and Unsteady States on the Basis of Large Diameter Centrifugal Fans. Eksploatacja Niezawodnosc-Maintenance and Reliability. 16(2): 211-216.

Heinemann, T. and Becker, S. 2017. Axial Fan Blade Vibration Assessment under Inlet Cross-Flow Condition Using Laser Scanning Vibrometry. Applied Sciences. 7(862): 1-16.

DOI: https://doi.org /10.3390/app7080862.

Downloads

Published

2018-08-21

Issue

Section

Science and Engineering

How to Cite

EFFECTS OF INLET CLOSURE LEVEL ON VIBRATION CHARACTERISTICS OF A MODIFIED CENTRIFUGAL FAN. (2018). Jurnal Teknologi, 80(6). https://doi.org/10.11113/jt.v80.12170