THE EFFECT OF ETHANOL ON FUEL TANK CORROSION RATE
DOI:
https://doi.org/10.11113/jt.v80.12324Keywords:
Ethanol, SI engine, fuel tank, potentiostat, corrosion rateAbstract
In recent decades, the use of ethanol as an alternative fuel for S.I. engines has become a popular issue. This is not only due to availability and oil prices, but also to address concerns about the increase in greenhouse gas effects. However, ethanol is corrosive in a fuel tank made of metal, because it contains soluble chloride ions. Therefore, this paper presents the results of an investigation of the fuel tank corrosion rate made of metal Fe_U_100 due to the use of pure ethanol. The test was performed by PGS-120T potentiostat with the addition of NaCl in ethanol in concentrations of 5, 10, 15, 20, and 25% while the estimated corrosion rate on pure ethanol was done by regression. The estimation of the fuel tank corrosion rate through the exponential regression for the use of pure ethanol is 4,116 mpy. Then, from the assessment metrics, the fuel tank made of Fe_U_100 has corrosion resistance in the excellent category. This means no fuel tank modification or replacement is required for pure ethanol applications in S.I. engine.
References
Akpan, U. G., Alhakim, A. A. & Ijah, U. J. J. 2008. Production of Ethanol Fuel from Organic and Food Wastes. Leonardo Electronic Journal of Practices and Technologies. 7(13): 001-011.
Adam, I. K., Galadima, A. & Muhammad, A. I. 2011. Biofuels in the Quest for Sustainable Energy Development. Journal of Sustainable Development. 4(3): 10-19. Available at: http://www.ccsenet.org/journal/index.php/jsd/article/view/10884.
Carlsson, H. & Fenton, P. 2010. BioEthanol for Sustainable Transport - Results and Recommendations from the European Best Project, Stockholm.
IEA. 2015. World Energy Outlook 2015, Paris.
Sorrell, S. et al. 2009. Global Oil Depletion: An Assessment of the Evidence for a Near-term Peak in Global Oil Production, Available at: http://linkinghub.elsevier.com/retrieve/pii/S0301421510003204.
EAA. 2009. Annual Report 2008 and Environmental Statement 2009, Copenhagen. Available at: http://www.pedz.uni-mannheim.de/daten/edz-bn/gdf/09/Annual-report-2008.pdf.
Demirbas, A. 2011. Competitive Liquid Biofuels from Biomass. Applied Energy. 88(1): 17-28. Available at: http://dx.doi.org/10.1016/j.apenergy.2010.07.016.
ETSAP, I. E. A. 2010. Ethanol Internal Combustion Engines. Technology Brief T06. (June): 1-6.
Labeckas, G., Slavinskas, S. & Maz, M. 2014. The Effect of Ethanol – Diesel – Biodiesel Blends on Combustion, Performance And Emissions of a Direct Injection Diesel Engine. Energy Conversion and Management. 79(2014): 698-720. doi: 10.1016/j.enconman.2013.12.064.
Shahir, S. A. et al. 2015. Performance and Emission Assessment of Diesel – Biodiesel – Ethanol / Bioethanol Blend as a Fuel in Diesel Engines : A Review. Renewable and Sustainable Energy Reviews. 48(2015): 62-78. Available at: http://dx.doi.org/10.1016/j.rser.2015.03.049.
Yilmaz, N. et al. 2014. Investigation of CI Engine Emissions in Biodiesel – Ethanol – Diesel Blends as a Function of Ethanol Concentration. Fuel. 115(2014): 790-793. doi: 10.1016/j.fuel.2013.08.012.
Cardona, C. A. 2007. Fuel Ethanol Production : Process Design Trends and Integration Opportunities. Bioresource Technology. 98(12): 2415-2457. Available at: http://www.sciencedirect.com/science/article/pii/S0960852407000156.
U.S Department of Energy. 2005. Low-Level Ethanol Fuel Blends. Clean Cities, (April). Available at: www.eere.energy.gov/cleancities.
EPURE. 2015. European Renewable Ethanol: State of the Industry Report. Energy, (August).Available at: http://epure.org/media/1215/epure_state_industry2015_web.pdf.
Renewable Fuels Association. 2016. 2016 Ethanol Industry Outlook, Washington, DC: RFA. Available at: www.ethanolRFA.org.
Gaurav, T. & Nitin, S. 2014. Experimental Investigation of Ethanol Blends with Gasoline on SI Engine. Int. Journal of Engineering Research and Applications. 4(10): 108-114.
Ahmed, M. A., Ismail, Y., & Mohamed, M. 2017. The Influence of Ethanol–Gasoline Blends on Performance Characteristics of Engine Generator Set. American Journal of Engineering Research. 6(9): 71-77.
Ozsezen, A. N. & Canakci, M. 2011. Performance and Combustion Characteristics of Alcohol E Gasoline Blends at Wide-open Throttle. Energy. 36(5): 2747-2752. Available at: http://dx.doi.org/10.1016/j.energy.2011.02.014.
Bakenhus, M. 2016. Economical, High-Efficiency Engine Technologies for Alcohol Fuels. American Energy Independence. Available at: https://archive.epa.gov/otaq/technology/web/pdf/epa-fev-isaf-no55.pdf.
The Royal Society. 2008. Sustainable biofuels: prospects and challenges, Available at: http://royalsociety.org/uploadedFiles/Royal_Society_Content/policy/publications/2008/7980.pdf.
Brinkman, N. D. et al. 1994. The Development of Improved Fuel Specifications for Methanol (M85) and Ethanol (Ed85). SAE Technical Paper. 1994-3–1.doi:10.4271/940764.
Kameoka, A. et al. 2005. Effect of Alcohol Fuels on Fuel-Line Materials of Gasoline Vehicles. Powertrain & Fluid Systems Conference & Exhibition Technical Papers. (2005-01–3708).
Singh, R. 2009. Ethanol Corrosion in Pipelines. Material Performance. (May): 9-11.
Rawat, J., Rao, P. V. C. & Choudary, N. V. 2008. Effect of Ethanol-Gasoline Blends on Corrosion Rate in the Presence of Different Materials of Construction used for Transportation. SAE Technical Paper. 2008-28–1(November).
Kane, R. D. 2009. Ethanol and Stress Corrosion Cracking in Petroleum Storage Tanks. NACE Corrosion Conference and Expo. 1-16.
Lukáš M., Jan M., Milan P., Petr B., Martin S. & Aneta K, 2017. Study of Corrosion of Metallic Materials in Ethanol-Gasoline Blends: Application of Electrochemical Methods. Energy Fuels, 31 (10), pp 10880–10889.
Fahmi, L. & Setiyo, M. 2015. Effect of Ethanol Blend on Corrosion Rate of Fuel Tank (original: Pengaruh Campuran Ethanol Pada Laju Korosi Tangki Bahan Bakar). In Semnastek. Jakarta: Fakultas Teknik Universitas Muhammadiyah Jakarta. 1-6.
Fontana, M. 1987. Corrosion Engineering, New York: McGraw-Hill. Available at: http://dl.iranidata.com/book/daneshgahi/MarsFontana-CorrosionEngineering(www.iranidata.com).pdf.
Kannan, S., Saleh, A. & Nasir, F. 2016. Impact of Metals on Corrosive Behavior of Biodiesel e Diesel e Ethanol (BDE) Alternative Fuel. Renewable Energy. 94: 1-9. http://dx.doi.org/10.1016/j.renene.2016.03.015.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.