ANTICANCER EFFECTS OF RETINOIC ACID IN CERVICAL CANCER CELLS

Authors

  • Sugania Malar Chinapayan Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Praseetha Prabhakaran Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v81.12397

Keywords:

Cervical cancer, anti-cancer, retinoic acid, cancer stem cells (CSCs), differentiation

Abstract

Cervical cancer is a leading cause of cancer-related death in women, and it is known to have a poor prognosis. This is because, patients develop progressive or recurrent tumours after primary treatment, and the major reason for tumour recurrence is the presence of cancer stem cells (CSCs). It is known that retinoic acid (RA) has potential therapeutic effects on cervical cancer. However, the possible mode of action of RA in cervical cancer cells, and its relation to CSCs remains elusive. The aim of this research was to determine the anticancer effect of RA in cervical cancer cells (HeLa). HeLa cells were treated by various concentrations of RA ranging from 5-50µM to determine the effect of RA on cell viability, and cell proliferation. Both experiments were carried out using Celltiter-glo 2.0 assay and CyQuant NF assay, respectively. Apoptosis activity was determined using Caspase-Glo 3/7 assay. Immunofluorescent staining was conducted to detect the expression of differentiation marker (pan-keratin), and stem cell markers (CD133 and SSEA4) on untreated and treated HeLa cells with 10µM of RA. The findings showed that RA reduced cell viability and proliferation in a dose-dependent manner by 12-83% and 22-86%, respectively. However, a change in caspase3/7 activity between untreated, and 10µM RA-treated Hela cells were not detected indicating absence of apoptotic activity. The study also revealed that expression of differentiation marker (pan-keratin) was up-regulated, while expressions of stem cell markers (CD133 and SSEA4) were down-regulated. In addition, morphology of HeLa cells displayed a more differentiated phenotype that is less proliferative upon RA treatment. These findings suggest that RA showed its anticancer effect on cervical cancer cells by exhibiting cytotoxicity, inhibiting proliferation capacity, and inducing differentiation of cervical cancer cells. This finding shows that retinoic acid may potentially serve as a potent targeted therapy for cervical cancer and other cancers possessing CSCs within its tumors.  

References

Muhamad, N. A., Kamaluddin, M. A., Adon, M. Y., Noh, M. A., Bakhtiar, M. F., Ibrahim Tamim, N. S., . . . Aris, T. 2015. Survival Rates of Cervical Cancer Patients in Malaysia. Asian Pac J Cancer Prev. 16(7): 3067-3072.

Altucci, L., Rossin, A., Raffelsberger, W., Reitmair, A., Chomienne, C., & Gronemeyer, H. 2001. Retinoic Acid-induced Apoptosis in Leukemia Cells is Mediated by Paracrine Action of Tumor-selective Death Ligand TRAIL. Nat Med. 7(6): 680-686. doi: 10.1038/89050.

Bao, B., Ahmad, A., Azmi, A. S., Ali, S., & Sarkar, F. H. 2013. Overview of Cancer Stem Cells (CSCs) and Mechanisms of Their Regulation: Implications for Cancer Therapy. Curr Protoc Pharmacol. Chapter 14, Unit 14.25. doi: 10.1002/0471141755.ph1425s61.

Braaten, K. P., & Laufer, M. R. 2008. Human Papillomavirus (HPV), HPV-Related Disease, and the HPV Vaccine. Rev Obstet Gynecol. 1(1): 2-10.

Crosbie, E. J., Einstein, M. H., Franceschi, S., & Kitchener, H. C. 2013. Human Papillomavirus and Cervical Cancer. Lancet. 382(9895): 889-899. doi: 10.1016/s0140-6736(13)60022-7.

Doldo, E., Costanza, G., & Agostinelli, S. 2015. Vitamin A, Cancer Treatment and Prevention: The New Role of Cellular Retinol Binding Proteins. 2015: 624627. doi: 10.1155/2015/624627.

Domingo, E. J., Noviani, R., Noor, M. R., Ngelangel, C. A., Limpaphayom, K. K., Thuan, T. V., . . . Quinn, M. A. 2008. Epidemiology and Prevention of Cervical Cancer in Indonesia, Malaysia, the Philippines, Thailand and Vietnam. Vaccine. 26 (Suppl 12): M71-79. doi: 10.1016/j.vaccine.2008.05.039.

El-Metwally, T. H., Hussein, M. R., Pour, P. M., Kuszynski, C. A., & Adrian, T. E. 2005. High Concentrations of Retinoids Induce Differentiation and Late Apoptosis in Pancreatic Cancer Cells in Vitro. Cancer Biol Ther. 4(5): 602-611.

Elmore, S. 2007. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol. 35(4): 495-516. doi: 10.1080/01926230701320337.

Haghshenas, M., Golini-Moghaddam, T., Rafiei, A., Emadeian, O., Shykhpour, A., & Ashrafi, G. H. 2013. Prevalence and Type Distribution of High-risk Human Papillomavirus in Patients with Cervical Cancer: A Population-based Study. Infect Agent Cancer. 8(1): 20. doi: 10.1186/1750-9378-8-20.

Han, S., Fukazawa, T., Yamatsuji, T., Matsuoka, J., Miyachi, H., Maeda, Y., . . . Naomoto, Y. 2010. Anti-tumor Effect in Human Lung Cancer by a Combination Treatment of Novel Histone Deacetylase Inhibitors: SL142 or SL325 and Retinoic Acids. PLoS ONE. 5(11): e13834-e13834. doi: 10.1371/journal.pone.0013834.

Huang, R., & Rofstad, E. K. 2017. Cancer Stem Cells (CSCs), Cervical CSCs and Targeted Therapies. Oncotarget. 8(21): 35351-35367. doi: 10.18632/oncotarget.10169.

Kreso, A., van Galen, P., Pedley, N. M., Lima-Fernandes, E., Frelin, C., Davis, T., . . . O'Brien, C. A. 2014. Self-renewal as a Therapeutic Target in Human Colorectal Cancer. Nat Med. 20(1): 29-36. doi: 10.1038/nm.3418.

Muhamad, N. A., Kamaluddin, M. A., Adon, M. Y., Noh, M. A., Bakhtiar, M. F., Ibrahim Tamim, N. S., . . . Aris, T. 2015. Survival Rates of Cervical Cancer Patients in Malaysia. Asian Pac J Cancer Prev. 16(7): 3067-3072.

Niles, R. M. 2004. Signaling Pathways in Retinoid Chemoprevention and Treatment of Cancer. Mutat Res. 555(1-2): 81-96. doi: 10.1016/j.mrfmmm.2004.05.020.

Ortiz-Sanchez, E., Santiago-Lopez, L., Cruz-Dominguez, V. B., Toledo-Guzman, M. E., Hernandez-Cueto, D., Muniz-Hernandez, S., . . . Garcia-Carranca, A. 2016. Characterization of Cervical Cancer Stem Cell-like Cells: Phenotyping, Stemness, and Human Papilloma Virus Co-receptor Expression. Oncotarget. 7(22): 31943-31954. doi: 10.18632/oncotarget.8218.

Pahlman, S., Ruusala, A. I., Abrahamsson, L., Mattsson, M. E., & Esscher, T. 1984. Retinoic Acid-induced Differentiation of Cultured Human Neuroblastoma Cells: A Comparison with Phorbolester-induced Differentiation. Cell Differ. 14(2): 135-144.

Prabhakaran, P., Hassiotou, F., Blancafort, P., & Filgueira, L. 2013. Cisplatin Induces Differentiation of Breast Cancer Cells. Front Oncol. 3: 134. doi: 10.3389/fonc.2013.00134.

Prabhakaran, P., Hassiotou, F., Blancafort, P., & Filgueira, L. 2013. Cisplatin Induces Differentiation of Breast Cancer Cells. Frontiers in Oncology. 3(134). doi: 10.3389/fonc.2013.00134.

Rostovskaya, M., & Anastassiadis, K. 2012. Differential Expression of Surface Markers in Mouse Bone Marrow Mesenchymal Stromal Cell Subpopulations with Distinct Lineage Commitment. PLoS ONE. 7(12): e51221. doi: 10.1371/journal.pone.0051221.

Sancho, P., Barneda, D., & Heeschen, C. 2016. Hallmarks of Cancer Stem Cell Metabolism. Br J Cancer. 114(12): 1305-1312. doi: 10.1038/bjc.2016.152.

Sun, S. Y., & Lotan, R. 2002. Retinoids and Their Receptors in Cancer Development and Chemoprevention. Crit Rev Oncol Hematol. 41(1): 41-55.

Truong, T. T., Huynh, K., Nakatsu, M. N., & Deng, S. X. 2011. SSEA4 is a Potential Negative Marker for the Enrichment of Human Corneal Epithelial Stem/Progenitor Cells. Invest Ophthalmol Vis Sci. 52(9): 6315-6320. doi: 10.1167/iovs.11-7518.

Vinogradov, S., & Wei, X. 2012. Cancer Stem Cells and Drug Resistance: The Potential of Nanomedicine. Nanomedicine (Lond). 7(4): 597-615. doi: 10.2217/nnm.12.22.

Wang, K., Zeng, J., Luo, L., Yang, J., Chen, J. I. E., Li, B. I. N., & Shen, K. 2013. Identification of a Cancer Stem Cell-like Side Population in the HeLa Human Cervical Carcinoma Cell Line. Oncology Letters. 6(6): 1673-1680. doi: 10.3892/ol.2013.1607.

Wang, L., Guo, H., Lin, C., Yang, L., & Wang, X. 2014. Enrichment and Characterization of Cancer Stem‑like Cells from a Cervical Cancer Cell Line. Mol Med Rep. 9(6): 2117-2123. doi: 10.3892/mmr.2014.2063.

Wu, S., Donigan, A., Platsoucas, C. D., Jung, W., Soprano, D. R., & Soprano, K. J. 1997. All-trans-retinoic Acid Blocks Cell Cycle Progression of Human Ovarian Adenocarcinoma Cells at Late G1. Exp Cell Res. 232(2): 277-286. doi: 10.1006/excr.1997.3495.

Yao, T., Lu, R., Zhang, Y., Zhang, Y., Zhao, C., Lin, R., & Lin, Z. 2015. Cervical Cancer Stem Cells. Cell Prolif. 48(6): 611-625. doi: 10.1111/cpr.12216.

Downloads

Published

2019-01-22

Issue

Section

Science and Engineering

How to Cite

ANTICANCER EFFECTS OF RETINOIC ACID IN CERVICAL CANCER CELLS. (2019). Jurnal Teknologi (Sciences & Engineering), 81(2). https://doi.org/10.11113/jt.v81.12397