DEVELOPMENT OF AEROBIC GRANULES IN SEQUENCING BATCH REACTOR SYSTEM FOR TREATING HIGH TEMPERATURE DOMESTIC WASTEWATER

Authors

  • Mohd Hakim Ab Halim Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia Disaster Preparedness and Prevention Centre, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
  • Aznah Nor Anuar Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia Disaster Preparedness and Prevention Centre, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia
  • Shreeshivadasan Chelliapan Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia
  • Norhaliza Abdul Wahab Department of Control and Mechatronics Engineering, School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Hazlami Fikri Basri Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Zaini Ujang Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
  • Mustafa M. Bob Department of Civil Engineering, College of Engineering, Taibah University, 30001 Universities Road, Al Madinah Al Monawarah, Saudi Arabia

DOI:

https://doi.org/10.11113/jt.v81.12436

Keywords:

Aerobic granular sludge, sequencing batch reactor, high temperature, hot climate, domestic wastewater, wastewater treatment

Abstract

The application of aerobic granular sludge (AGS) in treating real domestic wastewater at high temperature is still lacking. In this study, the microstructure and morphology of the granules, as well as bioreactor performance, were investigated during the treatment of real domestic wastewater at high temperature (50 °C). The experiment was executed in a sequencing batch reactor (SBR) with a complete cycle time of 3 hours for the treatment of low-strength domestic wastewater at an organic loading rate (OLR) of 0.6 kg COD m−3 d−1. Stable mature granules with average diameters between 2.0 and 5.0 mm, and good biomass concentration of 5.8 g L−1 were observed in the bioreactor. AGS achieved promising results in the treatment of domestic wastewater with good removal rates of 84.4 %, 99.6 % and 81.7 % for chemical oxygen demand (COD), ammoniacal nitrogen (NH3−N), and total phosphorus (TP), respectively. The study demonstrated the formation capabilities of AGS in a single, high and slender column type-bioreactor at high temperature which is suitable to be applied in hot climate condition areas especially countries with tropical and desert-like climates.

References

Dahalan, F. A., Abdullah, N., Yuzir, A., Olsson, G., Hamdzah, M., Din, M. F. M., Ahmad, S. A., Khalil, K. A., Anuar, A. N., and Noor, Z. Z. 2015. A Proposed Aerobic Granules Size Development Scheme for Aerobic Granulation Process. Bioresource Technology. 181: 291-296.

Sengar, A., Basheer, F., Aziz, A., and Farooqi, I. H. 2018. Aerobic Granulation Technology: Laboratory Studies to Full Scale Practices. Journal of Cleaner Production. 197(1): 616-632.

Morgenroth, E., Sherden, T., van Loosdrecht, M. C. M., Heijnen, J. J., and Wilderer, P. A. 1997. Aerobic Granular Sludge in a Sequencing Batch Reactor. Water Research. 31(12): 3191-3194.

Dangcong, P., Bernet, N., Delgenes, J. P., and Moletta, R. 1999. Aerobic Granular Sludge-A Case Report. Water Research. 33: 890-893.

Bengtsson, S., de Blois, M., Wilén, B. M., and Gustavsson, D. 2018. A Comparison of Aerobic Granular Sludge with Conventional and Compact Biological Treatment Technologies. Environmental Technology. 1-10.

Liu, X.-W., Sheng, G.-P., and Yu, H.-Q. 2009. Physicochemical Characteristics of Microbial Granules. Biotechnology Advances. 27(6): 1061-1070.

Ma, Y. J., Xia, C. W., Yang, H. Y., and Zeng, R. J. 2014. A Rheological Approach to Analyze Aerobic Granular Sludge. Water Research. 50: 171-178.

Liao, B., Allen, D., Droppo, I., Leppard, G., and Liss, S. 2001. Surface Properties of Sludge and Their Role in Bioflocculation and Settleability. Water Research. 35(2): 339-350.

Liu, Y., and Tay, J.-H. 2004. State of the Art of Biogranulation Technology for Wastewater Treatment. Biotechnology Advances. 22(7): 533-563.

Beun, J. J., Hendriks, A., Van Loosdrecht, M. C. M., Morgenroth, E., Wilderer, P. A., and Heijnen, J. J. 1999. Aerobic Granulation in a Sequencing Batch Reactor. Water Research. 33(10): 2283-2290.

Qin, L., Liu, Y., and Tay, J.-H., 2004. Effect of Settling Time on Aerobic Granulation in Seq uencing Batch Reactor. Biochemical Engineering Journal. 21(1): 47-52.

Chen, G., Bin, L., Tang, B., Huang, S., Li, P., Fu, F., Wu, L., and Yang, Z. 2019. Rapid Reformation of Larger Aerobic Granular Sludge in an Internal-circulation Membrane Bioreactor after Long-term Operation: Effect of Short-time Aeration. Bioresource Technology. 273: 462-467.

de Kreuk, M. K., and van Loosdrecht, M. C. M. 2004. Selection of Slow Growing Organisms as a Means for Improving Aerobic Granular Sludge Stability. Water Science and Technology. 49(11-12): 9-17.

Liu, Y., and Tay, J.-H. 2002. The Essential Role of Hydrodynamic Shear Force in the Formation of Biofilm and Granular Sludge. Water Research. 36(7): 1653-1665.

Tay, J. H., Liu, Q. S., and Liu, Y. 2004. The Effect of Upflow Air Velocity on the Structure of Aerobic Granules Cultivated in a Sequencing Batch Reactor. Water Science and Technology. 49(11-12): 35-40.

Muda, K., Aris, A., Salim, M. R., Ibrahim, Z., Yahya, A., van Loosdrecht, M. C. M, Ahmad, A., and Nawahwi, M. Z. 2010. Development of Granular Sludge for Textile Wastewater Treatment. Water Research. 44(15): 4341-4350.

Nor Anuar, A., Ujang, Z., van Loosdrecht, M. C. M., de Kreuk, M. K., and Olsson G. 2012. Strength Characteristics of Aerobic Granular Sludge. Water Science and Technology. 65(2): 309-316.

Lochmatter, S., and Holliger, C. 2014. Optimization of Operation Conditions for the Startup of Aerobic Granular Sludge Reactors Biologically Removing Carbon, Nitrogen, and Phosphorous. Water Research. 59: 58-70.

Ab Halim, M. H., Nor Anuar, A., Azmi, S. I., Abdul Jamal, N. S., Abdul Wahab, N., Ujang, Z., Shraim, A., and Bob, M. M. 2015. Aerobic Sludge Granulation at High Temperatures for Domestic Wastewater Treatment. Bioresource Technology. 185: 445-449.

Abdullah, N., Ujang, Z., and Yahya, A. 2011. Aerobic Granular Sludge Formation for High Strength Agro-based Wastewater Treatment. Bioresource Technology. 102(12): 6778-6781.

Rosman, N. H., Nor Anuar, A., Othman, I., Harun, H., Sulong, M. Z., Elias, S. H., Hassan, M. A. H. M., Chelliapan S., and Ujang Z. 2013. Cultivation of Aerobic Granular Sludge for Rubber Wastewater Treatment. Bioresource Technology. 129: 620-623.

Othman, I., Nor Anuar, A., Ujang, Z., Rosman, N.H., Harun, H., and Chelliapan, S. 2013. Livestock Wastewater Treatment using Aerobic Granular Sludge. Bioresource Technology. 133: 630-634.

Harun, H., and Nor Anuar, A. 2014. Development and Utilization of Aerobic Granules for Soy Sauce Wastewater Treatment: Optimization by Response Surface Methodology. Jurnal Teknologi. 69(5): 31-37.

de Kreuk, M. K., and van Loosdrecht, M. C. M. 2006. Formation of Aerobic Granules with Domestic Sewage. Journal of Environmental Engineering (ASCE). 132(6): 694-697.

Liu, Y. Q., Moy, B. Y. P., and Tay, J. H. 2007. COD Removal and Nitrification of Low-strength Domestic Wastewater in Aerobic Granular Sludge Sequencing Batch Reactors. Enzyme and Microbial Technology. 42(1): 23-28.

de Kreuk, M. K., Pronk, M., and van Loosdrecht, M. C. M. 2005a. Formation of Aerobic Granules and Conversion Processes in an Aerobic Granular Sludge Reactor at Moderate and Low Temperatures. Water Research. 39: 4476-4484.

Whang, L. M., and Park, J. K. 2006. Competition between Polyphosphate- and Glycogen-accumulating Organisms in Enhanced-biological Phosphorus-removal Systems: Effect of Temperature and Sludge Age. Water Environment Research. 78: 4-11.

Zitomer, D. H., Duran, M., Albert, R., and Guven, E. 2007. Thermophilic Aerobic Granular Biomass for Enhanced Settleability. Water Research. 41: 819-825.

Song, Z., Ren, N., Zhang, K., and Tong, L. 2009. Influence of Temperature on the Characteristics of Aerobic Granulation in Sequencing Batch Airlift Reactors. Journal of Environmental Sciences. 21(3): 273-278.

Ebrahimi, S., Gabus, S., Rohrbach-Brandt, E., Hosseini, M., Rossi, P., Maillard, J., and Holliger, C. 2010. Performance and Microbial Community Composition Dynamics of Aerobic Granular Sludge from Sequencing Batch Bubble Column Reactors Operated at 20 °C, 30 °C, and 35 °C. Applied Microbiology and Biotechnolog. 87: 1555-1568.

Cui, F., Park, S., Kim, M. 2014. Characteristics of Aerobic Granulation at and Mesophilic Temperatures in Wastewater Treatment. Bioresource Technolog. 151: 78-84.

Ab Halim, M. H., Nor Anuar, A., Abdul Jamal, N. S., Azmi, S. I., Ujang, Z and on the Performance of Aerobic Granular Sludge In Biological Treatment of Wastewater. Journal of Environmental Management. 184: 271-280.

Bassin, J. P., Tavares, D. C., Borges, R. C., and Dezotti, M. 2019. Development of Aerobic Granular Sludge under Tropical Climate Conditions: The Key Role of Inoculum Adaptation under Reduced Sludge Washout for Stable Granulation. Journal of Environmental Management. 230: 168-182.

Al-Jlil, S. A. 2009. COD and BOD Reduction of Domestic Wastewater using Activated Sludge, Sand Filters and Activated Carbon in Saudi Arabia. Biotechnology. 8(4): 473-477.

APHA. 2012. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.

Liu, Q. S., Liu, Y., Tay, S. T. L., Show, K. Y., Ivanov, V., Benjamin, M., and Tay, J. H. 2005. Startup of Pilot-scale Aerobic Granular Sludge Reactor by Stored Granules. Environmental Technology. 26(12): 1363-1370.

Sarma, S. J., Tay, J. H., and Chu, A. 20 7. Finding Knowledge Gaps in Aerobic Granulation Technology. Trends in Biotechnology. 35(1): 66-78.

Ab Halim, M. H. 2018. Development of Aerobic Granules in Sequencing Batch Reactor System for Treating High Temperature Domestic Wastewater. Doctor of Philosophy. Universiti Teknologi Malaysia, Johor Bahru.

Nancharaiah, Y. V., and Reddy, G. K. K. 2018. Aerobic Granular Sludge Technology: Mechanisms of Granulation and Biotechnological Applications. Bioresource Technology. 247: 1128-1143.

Wilén, B. M., Liébana, R., Persson, F., Modin, O., and Hermansson, M. 2018. The Mechanisms of Granulation of Activated Sludge in Wastewater Treatment, Its Optimization, and Impact on Effluent Quality. Applied Microbiology and Biotechnology. 102(12): 5005-5020.

Martins, A. M. P., Pagilla, K., Heijnen, J. J., and van Loosdrecht, M. C. M. 2004. Filamentous Bulking Sludge−A Critical Review. Water Research. 38(4): 793-817.

McSwain, B. S., Irvine, R. L., and Wilderer, P. A. 2004. The Effect of Intermittent Feeding on Aerobic Granule Structure. Water Science and Technology. 49(11): 19-25.

Liu, Y. and Liu, Q. S. 2006. Causes and Control of Filamentous Growth in Aerobic Granular Sludge Sequencing Batch Reactors. Biotechnology Advances. 24(1): 115-127.

Val del Río, A., Figueroa, M., Arrojo, B., Mosquera-Corral, A., Campos, J. L., García-Torriello, G., Méndez, R. 2012. Aerobic Granular SBR Systems Applied to the Treatment of Industrial Effluents. Journal of Environmental Management. 95: S88-S92.

Gjaltema, A., Vinke, J. L., van Loosdrecht, M. C. M., and Heijnen, J. J. 1997. Abrasion of Suspended Biofilm Pellets in Airlift Reactors: Importance of Shape, Structure and Particle Concentrations. Biotechnology and Bioengineering. 53(1): 88-99.

van Loosdrecht, M. C. M., Eikelboom, D. H., Gjaltema, A., Mulder, A., Tijhuis, L., and Heijnen, J. J. 1995. Biofilm Structures. Water Science and Technology. 32(8): 35-43.

Wang, S.-G., Liu, X.-W., Gong, W.-X., Gao, B.-Y., Zhang, D.-H., and Yu, H.-Q. 2007. Aerobic Granulation with Brewery Wastewater in a Sequencing Batch Reactor. Bioresource Technology. 98(11): 2142-2147.

Belmonte, M., Vázquez-Padín, J. R., Figueroa, M., Franco, A., Mosquera-Corral, A., Campos, J. L., and Méndez, R. 2009. Characteristics of Nitrifying Granules Developed in an Air Pulsing SBR. Process Biochemistry. 44: 602-606.

de Kreuk, M. K, Heijnen, J. J, and van Loosdrecht, M. C. M. 2005b. Simultaneous COD, Nitrogen, and Phosphate Removal by Aerobic Granular Sludge. Biotechnology and Bioengineering. 90(6): 761-769.

Jiang, X., Yuan, Y., Ma, F., Tian, J., and Wang, Y. 2016. Enhanced Biological Phosphorus Removal by Granular Sludge in Anaerobic/Aerobic/Anoxic SBR during Start-up Period. Desalination and Water Treatment. 57(13): 5760-5771.

Sarma, S. J. and Tay, J. H. 2018. Carbon, Nitrogen and Phosphorus Removal Mechanisms of Aerobic Granules. Critical Reviews in Biotechnology. 38(7): 1077-1088.

Moy, B. Y. P., Tay, J. H., Toh, S. K., Liu, Y., and Tay, S. T. L. 2002. High Organic Loading Influences the Physical Characteristics of Aerobic Sludge Granules. Letters in Applied Microbiology. 34(6): 407-412.

Hamza, R. A., Zaghloul, M. S., Iorhemen, O. T., Sheng, Z., and Tay, J. H. 2019. Optimization of Organics to Nutrients (COD: N: P) Ratio for Aerobic Granular Sludge Treating High-strength Organic Wastewater. Science of the Total Environment. 650: 3168-3179.

Goodwin, J. A. S., Wase, D. A. J., and Forster, C. F. 1992. Pre-granulated Seeds for UASB Reactors: How Necessary Are They? Bioresource Technology. 41(1): 71-79.

Downloads

Published

2019-04-01

Issue

Section

Science and Engineering

How to Cite

DEVELOPMENT OF AEROBIC GRANULES IN SEQUENCING BATCH REACTOR SYSTEM FOR TREATING HIGH TEMPERATURE DOMESTIC WASTEWATER. (2019). Jurnal Teknologi (Sciences & Engineering), 81(3). https://doi.org/10.11113/jt.v81.12436