KINETICS, EQUILIBRIUM AND MECHANISMS OF NI (II) AND Pb (II) ION BIOSORPTION USING BIOSORBENT MIXTURE OF RHIZOPHORA APICULATE SP. AND ELAEIS GUINEENSIS SP.
DOI:
https://doi.org/10.11113/jt.v81.12443Keywords:
Rhizophora apiculate sp., Elaeis guineensis sp., heavy metals, biosorbent, biosorptionAbstract
The existence of metal ions in water supply has become a severe issue and created an awareness in order to find the significant methods for the removal of heavy metals (HM). In this study, the biosorbent used are Oil Palm Mesocarp Fibe (OPMF) (Elaeis guineensis sp.) and Mangrove Bark (Rhizophora apiculate sp.). These biosorbents mixed to form the biosorbent mixture (BM) to enhance the biosorption performance towards Ni (II) and Pb (II) ions. Four parameters applied to investigate the biosorption performance, i.e. reaction time, ratio/dosage, initial concentration and pH values. The biosorption performance for Pb (II) (90%, 5.7mg/g) was higher than Ni (II) (55%, 3.9mg/g). Five kinetic models were exercised to investigate the kinetic mechanisms namely pseudo-first and second-order, Bangham's theory, intra-particles diffusion and Elovich equation. The isotherm models viz. Langmuir, Freundlich, Dubinin-Radushkevich and Temkin Isotherm exercised to analyse the equilibrium biosorption data. Overall, pseudo-second-order discovered to act as biosorption kinetics for both Ni (II) and Pb (II) ions. The equilibrium biosorption data of Pb (II) was followed Temkin Isotherm, and Ni (II) supported by Freundlich Isotherm.
References
Wang, J., & Chen, C. 2014. Chitosan-based Biosorbents: Modification and Application for Biosorption of Heavy Metals and Radionuclides. Bioresource Technology. 160: 129-141.
Zhang, L., Zeng, Y., & Cheng, Z. 2016. Removal of Heavy Metal Ions Using Chitosan and Modified Chitosan: A Review. Journal of Molecular Liquids. 214: 175-191.
Ujih, M. B., Mohamadin, M. I., Asli, M. A., & Mohamed, B. N. 2017. Bioadsorption of Multiple Heavy Metal Ions by Rhizophora apiculate sp. and Elaesis guineensis sp./MB Nicodemus Uji et al. Scientific Research Journal. 14(1): 16-27.
Fuadi, F. A., Nor-Azemi, S. N. I., & Syed-Hassan, S. S. A. 2014. Biosorption Capacity of Nickel (II) and Cobalt (II) Ions from Aqueous Solutions by Oil Palm Waste and Sawdust. Advanced Materials Research. 911: 322-325.
Johari, I. S., Yusof, N. A., Haron, M. J., & Nor, S. M. M. 2013. Preparation and Characterization of Poly (ethyl hydrazide)-Grafted Oil Palm Empty Fruit Bunch Fibre for the Removal of Cu (II) Ions from an Aqueous Environment. Molecules. 18(7): 8461-8472.
Liu, R., Song, Y., & Tang, H. 2013. Application of the Surface Complexation Model to the Biosorption of Cu (II) and Pb(II) ions onto Pseudomonas pseudoalcaligenes Biomass. Biosorption Science & Technology. 31(1): 1-16.
Baysal, A., Ozbek, N., & Akman, S. 2013. Determination of Trace Metals in Waste Water and Their Removal Processes.
Gupta, R., Ahuja, P., Khan, S., Saxena, R. K., & Mohapatra, H. 2000. Microbial Biosorbents: Meeting Challenges of Heavy Metal Pollution in Aqueous Solutions. CURRENT SCIENCE-BANGALORE. 78(8): 967-973.
Macek, T., & Mackova, M. 2011. Potential of Biosorption Technology. Microbial Biosorption of Metals. Springer Netherlands. 7-17.
Das, N., Vimala, R., & Karthika, P. 2008. Biosorption of Heavy Metals—An Overview. Indian J Biotechnol. 7: 159-169.
Seey, T. L., & Kassim, M. J. N. M. 2012a. Characterization of Mangrove Bark as a Potentially Low- Cost Adsorbent for Reactive Dye Removal from Aqueous Solutions: Equilibrium, Mechanisms, and Kinetics. International Journal of Pure and Applied Sciences and Technology. 9(1).
Oo, C. W., & Jain, K. 2007.Removal of Cu2+ from Aqueous Solution by Rhizophora apiculata Mangrove Tannins-Based. International Conference on Chemical Sciences.
Rani, S., & Mahajan, R. K. 2016. Equilibrium, Kinetics and Thermodynamic Parameters for Adsorptive Removal of Dye Basic Blue 9 by Groundnut Shells and Eichhornia. Arabian Journal of Chemistry. 9: S1464-S1477.
Malik, R., & Dahiya, S. 2017. An Experimental and Quantum Chemical Study of Removal of Utmostly Quantified Heavy Metals in Wastewater Using Coconut Husk: A Novel Approach to Mechanism. International Journal of Biological Macromolecules. 98: 139-149.
Sadeek, S. A., Negm, N. A., Hefni, H. H., & Wahab, M. M. A. 2015. Metal Biosorption by Agricultural Biosorbents: Biosorption Isotherm, Kinetic and Biosorbents Chemical Structures. International Journal of Biological Macromolecules. 81: 400-409
Khosravihaftkhany, S., Morad, N., Teng, T. T., Abdullah, A. Z., & Norli, I. 2013. Biosorption of Pb(II) and Fe (III) from Aqueous Solutions Using Oil Palm Biomasses as Adsorbents. Water, Air, & Soil Pollution. 224(3): 1-14.
Nor-Azemi, S. N. I., Fuadi, F. A., & Syed-Hassan, S. S. A. 2014. Effect of Pretreatment on Biosorption of Nickel by Oil Palm Mesocarp Fiber. Advanced Materials Research. 906: 131-136). Trans Tech Publications
Oo, C. W., Kassim, M. J., & Pizzi, A. 2009. Characterization and Performance of Rhizophora apiculata Mangrove Polyflavonoid Tannins in the Biosorption of Copper (II) and Lead (II). Industrial Crops and Products. 30(1): 152-161.
Hossain, M. A., Ngo, H. H., Guo, W. S., & Nguyen, T. V. 2012. Palm Oil Fruit Shells as Biosorbent for Copper Removal from Water and Wastewater: Experiments and Sorption Models. Bioresource Technology. 113: 97-101.
Patescu, R. E., Simonescu, C. M., Busuioc, L. T., Onose, C., & Melinescu, A. 2016. Simultaneous Removal of Lead (II), Nickel (II), Zinc (II) and Copper (II) from Aqueous Solutions by Nano-hydroxyapatite Synthesized by Microwave Field. Environments. 9: 11.
Ho, Y. S., and Ofomaja, A. E. 2006. Kinetic Studies of Copper Ion Biosorption on Palm Kernel Fibre. Journal of Hazardous Materials. 137(3): 1796-1802.
Tan, I. A. W., Ahmad, A. L., & Hameed, B. H. 2009. Biosorption Isotherms, Kinetics, Thermodynamics and Desorption Studies of 2, 4, 6-trichlorophenol on Oil Palm Empty Fruit Bunch-based Activated Carbon. Journal of Hazardous Materials. 164(2): 473-482.
Ekmesˇcˇic, B. M., Maksin, D. D., Markovic, J. P., Vukovic, Z. M., Hercigonja, R. V., Nastasovic, A. B., & Onjia, A. E. 2015. Recovery of Molybdenum Oxyanions Using Macroporous Copolymer Grafted With Diethylenetriamine.
Chakrapani, C. H., Babu, C., Vani, K. N. K., & Rao, K. S. 2010. Biosorption Kinetics for the Removal of Fluoride from Aqueous Solution by Activated Carbon Adsorbents Derived from the Peels of Selected Citrus Fruits. Journal of Chemistry. 7(S1): S419-S427.
Rani, S., & Mahajan, R. K. 2012. Equilibrium, Kinetics and Thermodynamic Parameters for Adsorptive Removal of Dye Basic Blue 9 by Ground Nut Shells and Eichhornia. Arabian Journal of Chemistry.
Dada, A. O., Olalekan, A. P., Olatunya. A. M., & Dada, O. 2012. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ unto Phosphoric Acid Modified Rice Husk. IOSR Journal of Applied Chemistry. 3(1): 38-45.
P. Atkins and J de Paula. 2010. Physical Chemistry. 9th ed. New York, Oxford University Press.
Ismail, M. G. B. H., Weng, C. N., Rahman, H. A., & Zakaria, N. A. 2013. Freundlich Isotherm Equastion in determining Effectiveness a low Cost Adsorbent to Heavy Metal Removal in Wastewaster (Leachate) at Teluk Kitang Landfill, Pangkalan Chepa, Kelantan, Malaysia. Journal of Geography and Earth Science. 1(1): 01-08.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.