A REVIEW OF VISION BASED DEFECT DETECTION USING IMAGE PROCESSING TECHNIQUES FOR BEVERAGE MANUFACTURING INDUSTRY
DOI:
https://doi.org/10.11113/jt.v81.12505Keywords:
Automatic inspection, beverage manufacturing industry, defect detectionAbstract
Vision based quality inspection emerged as a prime candidate in beverage manufacturing industry. It functions to control the product quality for the large scale industries; not only to save time, cost and labour, but also to secure a competitive advantage. It is a requirement of International Organization for Standardization (ISO) 9001, to appease the customer satisfaction in term of frequent improvement of the quality of products and services. It is totally impractical to rely on human inspector to handle a large scale quality control production because human has major drawback in their performance such as inconsistency and time consuming. This article reviews defect detection using image processing techniques for beverage manufacturing industry. There are comparative studies on techniques suggested by previous researchers. This review focuses on shape defect detection, color concentration inspection and level of liquid products measurement in a container. Shape, color and level defects are the main concern for bottle inspection in beverage manufacturing industry. The development of practical testing and the services performance are also discussed in this paper.
References
Yun, J. P. 2009. Vision-based Defect Detection of Scale-covered Steel Billet Surfaces. Optical Engineering. 48(3): 37205.
Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., and Fieguth, P. 2015. A Review on Computer Vision based Defect Detection and Condition Assessment of Concrete and Asphalt Civil Infrastructure. Advanced Engineering Informatics. 29(2): 196-210.
Prabuwono, A. S., Sulaiman, R., Hamdan, A. R. and Hasniaty, A. 2006, November. Development of Intelligent Visual Inspection System (IVIS) for Bottling Machine. TENCON 2006-2006 IEEE Region 10 Conference IEEE. 1-4.
Baudet, N., Maire, J. L., and Pillet, M. 2013. The Visual Inspection of Product Surfaces. Food Quality and Preference. 27(2): 153-160.
Hassan, M. H., and Diab, S. L. 2010. Visual Inspection of Products with Geometrical Quality Characteristics of Known Tolerances. Ain Shams Engineering Journal. 1(1): 79-84.
Patel, K. K., Kar, A., Jha, S. N., and Khan, M. A. 2012. Machine Vision System: A Tool for Quality Inspection of Food and Agricultural Products. Journal of Food Science and Technology. 49(2): 123-141.
Skinner, N., Roche, A., O’Connor, J., Pollard, Y. and Todd, C. 2005. Workforce Development TIPS (Theory into Practice Strategies): A Resource Kit for the Alcohol and Other Drugs Field. Adelaide, Australia: National Centre for Education and Training on Addiction (NCETA): Flinders University.
Salas, E., Maurino, D. and Curtis, M. 2010. Human Factors in Aviation: An Overview. Human Factors in Aviation. Academic Press. 3-19.
Mak, K. L. and Peng, P. 2008. An Automated Inspection System for Textile Fabrics based on Gabor Filters. Robotics and Computer-Integrated Manufacturing. 24(3): 359-369.
Kujawińska, A. and Vogt, K. 2015. Human Factors in Visual Quality Control. Manag. Prod. Eng. Rev. 6(2): 25-31.
S.-H. Huang and Y.-C. Pan. 2015. Automated Visual Inspection in the Semiconductor Industry: A Survey. Comput. Ind. 66: 1-10.
Al Kamal, I. and Al-Alaoui, M. 2008. Online Machine Vision Inspection System for Detecting Coating Defects in Metal Lids. Proceedings of the International MultiConference of Engineers and Computer Scientists. II: 19-21.
Noor Khafifah Khalid, M. S. Z. A., Zuwairie Ibrahim. 2008. An Algorithm to Group Defects on Printed Circuit Board for Automated Visual Inspection. International Journal of Simulation: Systems, Science and Technology.
Ravikumar, S., Ramachandran, K. I. and Sugumaran, V. 2011. Machine Learning Approach for Automated Visual Inspection of Machine Components. Expert Systems with Applications. 38(4): 3260-3266.
Edris, M. Z. B., Zakaria, Z., Zin, M. S. I. M., and Jawad, M. S. 2015. Automated Deform Detection on Automotive Body Panels Using Gradient Filtering and Fuzzy C-Mean Segmentation. Jurnal Teknologi. 9: 47-50.
Mera, C., Orozco-Alzate, M., Branch, J., and Mery, D. 2016. Automatic Visual Inspection: An Approach with Multi-instance Learning. Comput. Ind. 83: 46-54.
Park, M., Jin, J. S., Au, S. L., Luo, S., and Cui, Y. 2009. Automated Defect Inspection System by Pattern Recognition. Proc. 5th Int. Conf. Image Graph. ICIG 2009. 2(2): 768-773.
Marhoon, A. F., Younis, A. N. S., and Taha, F. T. 2013. Automated Visual Inspection System for Specifying Brick Quality. Journal of Sensor Technology. 3(December): 110-114.
Li, X., Qiao, T., Pang, Y., Zhang, H., Yan, G. 2018. A New Machine Vision Real-time Detection System for Liquid Impurities based on Dynamic Morphological Characteristic Analysis and Machine Learning. Measurement. 124: 130-137.
Huang, B., Ma, S., Wang, P., Wang, H., Yang, J., Guo, X., Zhang, W., Wang, H. 2018. Research and Implementation of Machine Vision Technologies for Empty Bottle Inspection Systems. An International Journal Engineering Science and Technology. 21(1): 159-169.
Wang, Y., Li, K., Gan, S. and Cameron, C. 2019. Analysis of Energy Saving Potentials in Intelligent Manufacturing: A Case Study of Bakery Plants. Journal of Energy.
Jahanshahi, A. A., Gashti, M. A. H., Mirdamadi, S. A., Nawaser, K. and Khaksar, S. M. S. 2011. Study the Effects of Customer Service and Product Quality on Customer Satisfaction and Loyalty. International Journal of Humanities and Social Science. 1(7): 253-260.
Kefer, M. and Tian, J. 2016, August. An Intelligent Robot for Flexible Quality Inspection. 2016 IEEE International Conference on Information and Automation (ICIA) IEEE. 80-84.
Shafait, F., Imran, S. M., and Klette-Matzat, S. 2004. Fault Detection and Localization in Empty Water Bottles through Machine Vision. E-Tech 2004. 30-34.
Tachwali, Y., Al-Assaf, Y. and Al-Ali, A. R. 2007. Automatic Multistage Classification System for Plastic Bottles Recycling. Resources, Conservation and Recycling. 52(2): 266-285.
González RamÃrez, M. M., Villamizar Rincón, J. C., and Lopez Parada, J. F. 2014. Liquid Level Control of Coca-Cola Bottles Using an Automated System. CONIELECOMP 2014 - 24th Int. Conf. Electron. Commun. Comput. 148-154.
Zhang, D. and Lu, G. 2004. Review of Shape Representation and Description Techniques. Pattern Recognition. 37(1): 1-19.
Ramli, S., Mustafa, M. M., Hussain, A., and Wahab, D. A. 2012. Plastic Bottle Shape Classification Using Partial Erosion-based Approach. Modern Applied Science. 6(4): 77-83.
Moradi, G., Shamsi, M., Sedaaghi, M. H., and Moradi, S. 2011. Apple Defect Detection using Statistical Histogram based Fuzzy C-means Algorithm. Inst. Electr. Electron. Eng. 11-15.
Gonydjaja, R. and Kusuma, T. M. 2014. Rectangularity Defect Detection for Ceramic Tile Using Morphological Techniques. ARPN Journal of Engineering and Applied Sciences. 9(11): 2052-2056.
Abdellah, H., Ahmed, R., and Slimane, O. 2014. Defect Detection and Identification in Textile Fabric by SVM Method. IOSR Journal of Engineering. 4(12): 69-77.
Sahar, M., Nugroho, H. A., I, Tianur, Ardiyanto, and Choridah, L. 2016. Automated Detection of Breast Cancer Lesions Using Adaptive Thresholding and Morphological Operation. Int. Conf. Inf. Technol. Syst. Innov. 27-30.
Yam, K. L. and Papadakis, S. E. 2004. A Simple Digital Imaging Method for Measuring and Analyzing Color of Food Surfaces. Journal of Food Engineering. 61(1): 137-142.
Tang, J. T. J. 2010. A Color Image Segmentation Algorithm based on Region Growing. Comput. Eng. Technol. (ICCET), 2010 2nd Int. Conf. 6: 634-637.
Wang, X.-Y., Wang, T., and Bu, J. 2011. Color Image Segmentation Using Pixel Wise Support Vector Machine Classification. Pattern Recognition. 44(4): 777-787.
Dubey, S. R., Dixit, P., Singh, N., and Gupta, J. P. 2013. Infected Fruit Part Detection using K-Means Clustering Segmentation Technique. The International Journal of Interactive Multimedia and Artificial Intelligence. 2(2): 65.
Capizzi, G., Lo Sciuto, G., Napoli, C., Tramontana, E., and Wozniak, M. 2015. Automatic Classification of Fruit Defects based on Co-Occurrence Matrix and Neural Networks. Proc. 2015 Fed. Conf. Comput. Sci. Inf. Syst. FedCSIS 2015. 5: 861-867.
Yamin, A., Faisal Imran, Akbar, U., and Tanvir, S. H. 2017. Image Processing Based Detection & Classification of Blood Group Using Color Images. Int. Conf. Commun. Comput. Digit. Syst. 293-298.
Kreutzer, J. F., Flaschberger, J., Hein, C. M., and Lueth, T. C. 2016. Capacitive Detection of Filling Levels in a Cup. BSN 2016 - 13th Annu. Body Sens. Networks Conf. 31-36.
Pithadiya, K. J., Modi, C. K., and Chauhan, J. D. 2010. Machine Vision Based Liquid Level Inspection System using ISEF Edge Detection Technique. Proceedings of the International Conference & Workshop on Emerging Trends in Technology (ICWET). 601-605.
L. Yazdi, A. S. Prabuwono, and E. Golkar. 2011. Feature Extraction Algorithm for Fill Level and Cap Inspection in Bottling Machine. Proc. 2011 Int. Conf. Pattern Anal. Intell. Robot. ICPAIR 2011. 1(June): 47-52.
Yazdi, L., Prabuwono, A. S., and Golkar, E. 2011. Feature Extraction Algorithm for Fill Level and Cap Inspection in Bottling Machine. Proc. 2011 International Conference on Pattern Analysis and Intelligent Robotics 2011. 1(June): 47-52.
Hies, T., Babu, P. S., Wang, Y., Duester, R., Eikaas, H. S., and Meng, T. K. 2012. Enhanced Water-Level Detection by Image Processing. 10th International Conference on Hydroinformatics HIC 2012. January 2012.
Dave, V. A., and Hadia, P. S. K. 2015. Liquid Level and Cap Closure United Inspection using Image Processing. International Journal of Innovative Research in Science, Engineering and Technology. 1(12): 62-68.
Sharma, S., Krupa, K. V., Gandhi, R., Jain, A., and Shah, N. 2015. Empty and Filled Bottle Inspection System. J. Image Video Process. 1122-1126.
Aghajari, E. and G. Chandrashekhar, D. 2017. Self-Organizing Map based Extended Fuzzy C-Means (SEEFC) Algorithm for Image Segmentation. Applied Soft Computing. 54: 347-363.
Yogamangalam, R. and Karthikeyan, B. 2013. Segmentation Techniques Comparison in Image Processing. International Journal of Engineering and Technology (IJET). 5(1): 307-313.
Zhang, J., Yan, C. H., Chui, C. K., and Ong, S. H. 2010. Fast Segmentation of Bone in CT Images using 3D Adaptive Thresholding. Computers in Biology and Medicine. 40(2): 231-236.
Choy, S. K., Lam, S. Y., Yu, K. W., Lee, W. Y., and Leung, K. T. 2017. Fuzzy Model-based Clustering and Its Application in Image Segmentation. Pattern Recognit. 68: 141-157.
Cremers, D., Rousson, M., and Deriche, R. 2007. A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape. International Journal of Computer Vision. 72(2): 195-215.
Gelfand, N. and Guibas, L. J. 2004, July. Shape Segmentation using Local Slippage Analysis. Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing ACM. 214-223.
Saad, N. M., Abu-Bakar, S. A. R., Muda, A. F., S. Muda, and Syafeeza, A. R. 2015. Automatic Brain Lesion Detection and Classification Based on Diffusion-weighted Imaging using Adaptive Thresholding and a Rule-based Classifier. International Journal of Engineering and Technology. 6(6): 2685-2697.
Ritchey, T. 2006. Problem Structuring using Computer-aided Morphological Analysis. Journal of the Operational Research Society. 57(7): 792-801.
Singh, A. and Neeraj Kumar. 2012. A Comprehensive Method for Image Contrast Enhancement based on Global-local Contrast and Local Standard Deviation. International Journal of Engineering Research & Technology. 2319-1163.
Saad, N. M., Bakar, S. A. R. S. A., Muda, A. S., and Mokji, M. M. 2015. Review of Brain Lesion Detection and Classification using Neuroimaging. J. Teknologi. 74(6): 73-85.
Bradley, D. and Roth, G. 2007. Adaptive Thresholding using the Integral Image. J. Graph. Tools. 12(20): 13-21.
Peuwnuan, K., Woraratpanya, K., and Pasupa, K. 2016. Modified Adaptive Thresholding using Integral Image. The 13th International Joint Conference on Computer Science and Software Engineering, JCSSE 2016. 2-6.
Jansi, S. and Subashini, P. 2012. Optimized Adaptive Thresholding based Edge Detection Method for MRI Brain Images. International Journal of Computer Applications. 51(20): 1-8.
Yazid, H. and Arof, H. 2013. Gradient based Adaptive Thresholding. Journal of Visual Communication and Image Representation. 24(7): 926-936.
Roy, P., Dutta, S., Dey, N., Dey, G., Chakraborty, S., and Ray, R. 2014. Adaptive Thresholding: A Comparative Study. International Conference on Circuits, Communication, Control and Computing II. 1320-1324.
Zhao, M., Yang, Y., and Yan, H. 2000. Adaptive Thresholding Method for Binarization Blueprint Images. Pattern Recognition Letters. 2(2000): 931-934.
Kowalczyk, M., Koza, P., Kupidura, P., and Marciniak, J. 2008. Application of Mathematical Morphology Operations for Simplification and Improvement of Correlation of Images in Close-range Photogrammetry. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 37: 153-158.
Soille, P. 2000. Morphological Image Analysis Applied to Crop Field Mapping. Image and Vision Computing. 18(13): 1025-1032.
Diaz-Huerta, C. C., Felipe-Riveron, E. M., and Montaño-Zetina, L. M. 2014. Quantitative Analysis of Morphological Techniques for Automatic Classification of Micro-calcifications in Digitized Mammograms. Expert Systems with Applications. 41(16): 7361-7369.
Elbehiery, H., Hefnawy, A., and Elewa, M. 2005. Surface Defects Detection for Ceramic Tiles Using Image Processing and Morphological Techniques. Proceeding World Academy of Science, Engineering and Technology. 5(5): 158-162.
de Mira Jr, J. and Mayer, J. 2003. Image Feature Extraction for application of Biometric Identification of Iris - A Morphological Approach. Proc. XVI Brazilian Symposium on Computer Graphics and Image Processing.
Mukhopadhyay, S., and Chanda, B. 2003. Multiscale Morphological Segmentation of Gray-scale Images. IEEE Transactions on Image Processing. 12(5): 533-549.
Pesaresi, M., and Benediktsson, J. A. 2001. A New Approach for the Morphological Segmentation of High-resolution Satellite Imagery. IEEE Transactions on Geoscience and Remote Sensing. 39(2): 309-320.
Singh, A. and Kumar, N. 2014. A Global-local Contrast based Image Enhancement Technique based on Local Standard Deviation. International Journal of Computer Applications. 93(2): 8-12.
Shah, N., and Dahiya, V. 2015. Comparison of Global – Local Contrast Enhancement in Image Processing. Int. J. Appl. or Innov. Eng. Manag. 4(11): 16-22.
Yang, Y. and Zhou, Z. 2012. Research and Implementation of Image Enhancement Algorithm Based on Local Mean and Standard Deviation. IEEE Symp. Electr. Electron. Eng. 375-378.
Singh, S. S., Devi, H. M., Singh, T. T., and Sinam, T. 2012. Local Contrast Enhancement using Local Standard Deviation. International Journal of Computer Applications. 47(15): 31-35.
Zheng, D., Wang, J., and Xiao, Z. 2005. Image Enhancement Based on Local Standard Deviation. Journal of Information and Computing Science. 2(June): 1-10.
Cvetkovic, S. D., Schirris, J., and De With, P. H. N. 2007. Locally-adaptive Image Contrast Enhancement without Noise. IEEE International Conference on Image Processing 557-560.
Cheng, H.-D. C. H.-D. and Sun, Y. S. Y. 2000. A Hierarchical Approach to Color Image Segmentation using Homogeneity. IEEE Transactions on Image Processing. 9(12): 2071-2082.
Cheng, H., Jiang, X., and Wang, J. 2002. Color Image Segmentation based on Homogram Thresholding and Region Merging. Pattern Recognition. 35(2): 373-393.
N. I. Conference and H. I. Systems. 2009. Otsu Method and K-means. 2.
Jain, A. K. 2010. Data Clustering: 50 Years Beyond K-means. Pattern Recognition Letters. 31(8): 651-666.
Zhang, D., Islam, M. M., and Lu, G. 2012. A Review on Automatic Image Annotation Techniques. Pattern Recognition. 45(1): 346-362.
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Süsstrunk, S. 2011. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence. 34(11): 2274-2282.
Ng, H. P., Ong, S. H., Foong, K. W. C., Goh, P. S., and Nowinski, W. 2006. Medical Image Segmentation Using K-Means Clustering and Improved Watershed Algorithm. IEEE Xplore Proceedings. 61-65.
Zhang, Z., Zhang, J., and Xue, H. 2008. Improved K-Means Clustering Algorithm. 2008 Congress on Image and Signal Processing. 169-172.
Likas, A., Vlassis, N., and Verbeek, J. J. 2003. The Global k-means Clustering Algorithm. Pattern Recognition. 36(2): 451-461.
Guo, W. Y., Wang, X. F., and Xia, X. Z. 2014. Two-dimensional Otsu’s Thresholding Segmentation Method based on Grid Box Filter. Optik (Stuttg). 125(18): 5234-5240.
Jenifer, S., Parasuraman, S., and Kadirvelu, A. 2015. Otsu’s Method for Clip Limiting Histograms for Contrast Enhancement of Digital Mammograms. 2014 IEEE International Conference on Computational Intelligence and Computing Research, IEEE ICCIC 2014. 6-9.
Wang, X. and Xue, Y. 2016. Fast HEVC Intra Coding Algorithm based on Otsu's Method and Gradient. 2016 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB) IEEE. 1-5.
Almisreb, A. A., and Tahir, N. M. 2013. Enhancement of Iris Boundary Detection based on Otsu Method. IEEE Symp. Comput. Informatics, ISC. 2013. 143-146.
Mizushima, A., and Lu, R. 2013. An Image Segmentation Method for Apple Sorting and Grading using Support Vector Machine and Otsu’s Method. Computers and Electronics in Agriculture. 94: 29-37.
Vala, M. H. J. and Baxi, A. 2013. A Review on Otsu Image Segmentation Algorithm. International Journal of Advanced Research in Computer Engineering & Technology. 2(2): 387-389.
Zhang J., and Hu, J. 2008. Image Segmentation based on 2D Otsu Method with Histogram Analysis. 2008 International Conference on Computer Science and Software Engineering Image. 1: 105-108.
Lu, J. and Hu, R. 2012. A New Image Segmentation Method Based on Otsu Method and Ant Colony Algorithm. Int. Conf. Comput. Sci. Inf. Process. 767-769.
Sha, C., Hou, J., Cui, H., and Kang, J. 2016. Gray Level-Median Histogram Based 2D Otsu’s Method. Proceedings of the 2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration. ICIICII 2015. 30-33.
Lin, F., Chang, W.-Y., Lee, L.-C., Hsiao, H.-T., Tsai, W.-F., and Lai, J.-S. 2013. Applications of Image Recognition for Real-Time Water Level and Surface Velocity. 2013 IEEE Int. Symp. Multimed. 259-262.
Shrivakshan, G. T., and Chandrasekar, C. 2012. A Comparison of Various Edge Detection Techniques used in Image Processing. International Journal of Computer Science Issues. 9(5): 269-276.
Ogawa, K., Ito, Y., and Nakano, K. 2010. Efficient Canny Edge Detection Using a GPU. 2010 First Int. Conf. Netw. Comput. 279-280.
Zhang, Q., Yeo T. S., Tan, H. S., and Luo, Y. 2008. Imaging of a Moving Target with Rotating Parts based on the Hough Transform. IEEE Transactions on Geoscience and Remote Sensing. 46(1): 291-299.
Gupta, S. and Mazumdar, S. G. 2013. Sobel Edge Detection Algorithm. International J. Comput. Science Manag. Res. 2(2): 1578-1583.
Vijayarani, S. and Vinupriya, M. 2013. Performance Analysis of Canny and Sobel Edge Detection Algorithms in Image Mining. International Journal of Innovative Research in Computer and Communication Engineering. 1(8): 1760-1767.
Abdel-Qader, I., Abudayyeh, O., and Kelly, M. E. 2003. Analysis of Edge-detection Techniques for Crack Identification in Bridges. Journal of Computing in Civil Engineering. 17(4): 255-263.
Sharifi, M., Fathy, M., and Mahmoudi, M. T. 2002. A Classified and Comparative Study of Edge Detection Algorithms. Proceedings Information Technology Coding and Computing. 5-8.
Vincent, O. R., and Folorunso, O. 2009. A Descriptive Algorithm for Sobel Image Edge Detection. Proceeding Informing Science & IT Education Conference 2009. 1-11.
Zhang, J. Y., Yan, C., and Huang, X. X. 2009. Edge Detection of Images based on Improved Sobel Operator and Genetic Algorithms. Proceeding 2009 International Conference on Image Analysis and Signal Processing, IASP 2009. 3: 32-35.
Gao, W., Yang, L., Zhang, X., and Liu, H. 2010. An Improved Sobel Edge Detection. 2010 3rd IEEE International Conference on Computer Science and Information Technology, ICCSIT 2010. 5: 67-71.
Pithadiya, K. J., Modi C. K., and Chauhan, J. D. 2011. Selecting the Most Favourable Edge Detection Technique for Liquid Level Inspection in Bottles. International Journal of Computer Information Systems and Industrial Management Applications (IJCISIM). 3(December): 34-44.
Abdul Kadir Jumaat, Siti Salmah Yasiran, Aminah Abdul Malek, Wan Eny Zarina Wan Abdul Rahman, Norzaituleha Badrin, Siti Hajar Osman, Siti Rohaina Rafiee, Rozi Mahmud 2014. Performance Comparison of Canny and Sobel Edge Detectors on Balloon Snake in Segmenting Masses. 2014 International Conference on Computer and Information Sciences, ICCOINS 2014 - A Conference of World Engineering, Science and Technology Congress, ESTCON 2014 - Proceedings.
Ali, M., and Clausi, D. 2001. Using the Canny Edge Detector for Feature Extraction and Enhancement of Remote Sensing Images. Geoscience and Remote Sensing Symposium 2001. 2298-2300.
Wang, B., and Fan, S. 2009. An Improved CANNY Edge Detection Algorithm. 2009 Second International Workshop on Computer Science and Engineering. 497-500.
Ogawa, K., Ito, Y., and Nakano, K. 2010. Efficient Canny Edge Detection Using a GPU. 2010 First International Conference on Networking and Computing. 279-280.
Gentsos, C., Sotiropoulou, C. L., Nikolaidis, S., and Vassiliadis, N. 2010. Real-time Canny Edge Detection Parallel Implementation for FPGAs. 2010 IEEE International Conference on Electronics, Circuits and Systems, ICECS 2010 - Proc. 499-502.
Tsanakas, J. A., Chrysostomou, D., Botsaris, P. N., and Gasteratos, A. 2015. Fault Diagnosis of Photovoltaic Modules through Image Processing and Canny Edge Detection on Field Thermographic Measurements. International Journal of Sustainable Energy. 34(6): 351-372.
Fernandes, L. A. F., and Oliveira, M. M. 2008. Real-time Line Detection through an Improved Hough Transform Voting Scheme. Pattern Recognition. 41(1): 299-314.
Agan, I., Lenglet, C., Jahanshad, N., Yacoub, E., Harel, N., Thompson, P. M., Sapiro, G. 2011. A Hough Transform Global Probabilistic Approach to Multiple-subject Diffusion MRI Tractography. Medical Image Analysis. 15(4): 414-425.
Borrmann, D., Elseberg, J., Lingemann, K., and Nüchter, A. 2011. The 3D Hough Transform for Plane Detection in Point Clouds: A Review and a New Accumulator Design. 3D Research. 2(2): 1-13.
Barinova, O., Lempitsky, V., and Kohli, P. 2010. On Detection of Multiple Object Instances using Hough Transform. IEEE Transactions on Pattern Analysis and Machine Intelligence. 34(9): 1773-1784.
A. Yao, J. Gall, and L. Van Gool. 2010. A Hough Transform-Based Voting Framework for Action Recognition. Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference. 2061-2068.
Mukhopadhyay, P. and Chaudhuri, B. B. 2015. A Survey of Hough Transform. Journal of Pattern Recognition Society. 48(3): 993-1010.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.