SIMULTANEOUS METHYL ESTER PRODUCTION AND CAROTENE RECOVERY FROM CRUDE PALM OIL USING MEMBRANE REACTOR
DOI:
https://doi.org/10.11113/jt.v81.12539Keywords:
Biodiesel, membrane, palm oil, transesterification, vegetable oilAbstract
Fatty acid methyl ester (FAME) or biodiesel¸ which is considered as an alternative renewable fuel is usually produced via transesterification reaction of triglyceride from vegetable oil. Generally, there are two major challenges in the production of biodiesel i.e., reversible reaction of transesterification and immiscibility between oil and alcohol. Membrane reactor (MR), which combines reaction and separation, is an alternative process to overcome those challenges. The aim of the integrated reaction-separation process is to shift the equilibrium reaction, and to achieve a higher reaction conversion. The methyl ester that is produced may be separated to meet the biodiesel quality standards. FAME purification using membrane can be conducted without water washing (dry process), and this is interesting as the associated wastewater treatment step is eliminated. Another attractive feature of MR in esterification process is carotenoid recovery which is beneficial to improve the efficiency of the process. Several studies have indicated the efficacy of carotenoids recovery from methyl ester mixture. This paper reviews the use of MR for palm oil esterification. Membrane separation performances in methyl ester purification are also discussed. In addition, the potential of carotene recovery during esterification process is highlighted.Â
References
Crabbe, E., Nolasco-Hipolito, C., Kobayashi, G., Sonomoto, K. and Ishizaki, A. 2001. Biodiesel Production from Crude Palm Oil and Evaluation of Butanol Extraction and Fuel Properties. Process Biochemistry. 37 (1): 65-71. DOI:https://doi.org/10.1016/S0032-9592(01)00178-9.
Koushki, M., Nahidi, M. and Cheraghali, F. 2015. Physico-chemical Properties, Fatty Acid Profile and Nutrition in Palm Oil. Journal of Paramedical Sciences. 6(3).
Baroutian, S., Aroua, M. K., Raman, A. A. A. and Sulaiman, N. M. N. 2008. Density of Palm Oil-Based Methyl Ester. Journal of Chemical & Engineering Data. 53(3): 877-880. DOI:10.1021/je700682d.
Baroutian, S., Aroua, M. K., Raman, A. A. A. and Sulaiman, N. M. N. 2010. Methanol Recovery During Transesterification of Palm Oil in a TiO2/Al2O3 Membrane Reactor: Experimental Study and Neural Network Modeling. Separation and Purification Technology. 76(1): 58-63. DOI:https://doi.org/10.1016/j.seppur.2010.09.020.
Lin, S. W. 2011. Palm Oil, in: Veg. Oils Food Technol. Wiley-Blackwell. DOI:10.1002/9781444339925.ch2. 25-58.
Mekhilef, S., Siga, S. and Saidur, R. 2011. A Review on Palm Oil Biodiesel as a Source of Renewable Fuel. Renewable and Sustainable Energy Reviews. 15(4): 1937-1949. DOI:https://doi.org/10.1016/j.rser.2010.12.012.
Jansri, S., Ratanawilai, S. B., Allen, M. L. and Prateepchaikul, G. 2011. Kinetics of Methyl Ester Production from Mixed Crude Palm Oil by Using Acid-alkali Catalyst. Fuel Processing Technology. 92 (8): 1543-1548. DOI:https://doi.org/10.1016/j.fuproc.2011.03.017.
Ping, B. T. Y. and Yusof, M. 2011. Determination of Palm Oil Residue in Palm Kernel and Palm Oil Methyl Esters Using Near Infrared Spectroscopy. Journal of Oil Palm Research. 23: 1055-1059.
Ma, F. and Hanna, M.A. 1999. Biodiesel Production: A Review. Bioresource Technology. 70(1): 1-15. DOI:https://doi.org/10.1016/S0960-8524(99)00025-5.
Cao, P., Dubé, M. A. and Tremblay, A. Y. 2008. Methanol Recycling in the Production of Biodiesel in a Membrane Reactor. Fuel. 87(6): 825-833. DOI:10.1016/j.fuel.2007.05.048.
Dubé, M. A., Tremblay, A. and Cao, P. 2006. A Novel Membrane Reactor for the Continuous Production of Biodiesel, University University of Ottawa, CANADA of Ottawa, CANADA.
Dubé, M. A., Tremblay, A. Y. and Liu, J. 2007. Biodiesel production using a membrane reactor. Bioresource Technology. 98(3): 639-647. DOI:10.1016/j.biortech.2006.02.019.
Cao, P., Dubé, M. A. and Tremblay, A. Y. 2008. High-purity Fatty Acid Methyl Ester Production from Canola, Soybean, Palm, and Yellow Grease Lipids by Means of a Membrane Reactor. Biomass and Bioenergy. 32(11): 1028-1036. DOI:https://doi.org/10.1016/j.biombioe.2008.01.020.
Cao, P., Tremblay, A. Y., Dubé, M. A. and Morse, K. 2007. Effect of Membrane Pore Size on the Performance of a Membrane Reactor for Biodiesel Production. Industrial and Engineering Chemistry Research. 46(1): 52-58. DOI:10.1021/ie060555o.
Manjula, S. and Subramanian, R. 2006. Membrane technology in Degumming, Dewaxing, Deacidifying, and Decolorizing Edible Oils. Critical Reviews in Food Science and Nutrition. 46(7): 569-592. DOI:10.1080/10408390500357746.
de Morais Coutinho, C., Chiu, M. C., Basso, R. C., Ribeiro, A. P. B., Gonçalves, L. A. G. and Viotto, L. A. 2009. State of Art of the Application of Membrane Technology to Vegetable Oils: A Review. Food Research International. 42 (5-6): 536-550. DOI:10.1016/j.foodres.2009.02.010.
Bernardo, P., Drioli, E. and Golemme, G. 2009. Membrane Gas Separation: A Review/State of the Art. Industrial & Engineering Chemistry Research. 48(10): 4638-4663. DOI: 10.1021/ie8019032.
Law, J. Y. and Mohammad, A. W. 2017. Employing Forward Osmosis Technology through Hybrid System Configurations for the Production of Potable/Pure Water: A Review. Jurnal Teknologi. 79(2): 125-135. DOI: 10.11113/jt.v79.10402.
Wenten, I. G., Khoiruddin, K., Aryanti, P. T. P., Victoria, A. V. and Tanukusuma, G. 2018. Membrane-based Zero-Sludge Palm Oil Mill Plant. Reviews in Chemical Engineering. DOI: 10.1515/revce-2017-0117.
Widodo, S., Ariono, D., Khoiruddin, K., Hakim, A. N. and Wenten, I. G. 2018. Recent Advances in Waste Lube Oils Processing Technologies. Environmental Progress & Sustainable Energy. DOI: 10.1002/ep.13011.
Himma, N. F., Wardani, A. K., Prasetya, N., Aryanti, P. T. P. and Wenten, I. G. Recent Progress and Challenges in Membrane-based O2/N2 Separation. Reviews in Chemical Engineering. DOI: 10.1515/revce-2017-0094.
Khoiruddin, K., Ariono, D., Subagjo, S. and Wenten, I. G. 2017. Surface Modification of Ion-exchange Membranes: Methods, Characteristics, and Performance. Journal of Applied Polymer Science. 134(48): 45540. DOI:10.1002/app.45540.
Sianipar, M., Kim, S. H., Khoiruddin, Iskandar, F. and Wenten, I. G. 2017. Functionalized Carbon Nanotube (CNT) Membrane: Progress and Challenges. RSC Advances. 7 (81): 51175-51198. DOI:10.1039/C7RA08570B.
Drioli, E. and Curcio, E. 2007. Membrane Engineering for Process Intensification: A Perspective. Journal of Chemical Technology and Biotechnology. 82 (3): 223-227. DOI:10.1002/jctb.1650.
Drioli, E., Stankiewicz, A. I. and Macedonio, F. 2011. Membrane Engineering in Process Intensification—An Overview. Journal of Membrane Science. 380 (1): 1-8. DOI:10.1016/j.memsci.2011.06.043.
Wardani, A. K., Hakim, A. N., Khoiruddin and Wenten, I. G. 2017. Combined Ultrafiltration-electrodeionization Technique for Production of High Purity Water. Water Science and Technology. 75(12): 2891-2899. DOI:10.2166/wst.2017.173.
Wenten, I. G. and Khoiruddin 2016. Recent Developments In Heterogeneous Ion-exchange Membrane: Preparation, Modification, Characterization and Performance Evaluation. Journal of Engineering Science and Technology. 11(7): 916-934.
Ariono, D., Khoiruddin, Subagjo and Wenten, I. G. 2017. Heterogeneous Structure and Its Effect on Properties and Electrochemical Behavior of Ion-exchange Membrane. Materials Research Express. 4(2): 24006. DOI:10.1088/2053-1591/aa5cd4.
Wenten, I. G., Khoiruddin, K., Hakim, A. N. and Himma, N. F. 2017. Chapter 11-The Bubble Gas Transport Method - Membrane Characterization, in: Elsevier. 199-218. DOI:https://doi.org/10.1016/B978-0-444-63776-5.00011-5.
Aryanti, P. T. P., Sianipar, M., Zunita, M. and Wenten, I. G. 2017. Modified Membrane with Antibacterial Properties. Membrane Water Treatment. 8(5): 463-481. DOI:10.12989/mwt.2017.8.5.463.
Bhosle, B. M. and Subramanian, R. 2005. New Approaches in Deacidification of Edible Oils - A Review. Journal of Food Engineering. 69(4): 481-494. DOI:10.1016/j.jfoodeng.2004.09.003.
Othman, N., Manan, Z. A., Alwi, S. R. W. and Sarmidi, M. R. 2010. A Review of Extraction Technology for Carotenoids and Vitamin E Recovery from Palm Oil. Applied Science. 10 (12): 1187-1191.
Khoiruddin, Widiasa, I.N. and Wenten, I.G. 2014. Removal of inorganic Contaminants in Sugar Refining Process Using Electrodeionization. Journal of Food Engineering. 133: 40-45. DOI:10.1016/j.jfoodeng.2014.02.015.
Purwasasmita, M., Kurnia, D., Mandias, F. C., Khoiruddin and Wenten, I. G. 2015. Beer Dealcoholization using Non-Porous Membrane Distillation. Food and Bioproducts Processing. 94: 180-186. DOI:10.1016/j.fbp.2015.03.001.
Wenten, I. G., Dharmawijaya, P. T., Aryanti, P. T. P., Mukti, R. R. and Khoiruddin 2017. LTA Zeolite Membranes: Current Progress and Challenges In Pervaporation. RSC Advances. 7 (47): 29520-29539. DOI:10.1039/C7RA03341A.
Mangindaan, D., Khoiruddin, K. and Wenten, I. G. 2018. Beverage Dealcoholization Processes: Past, Present, and Future. Trends in Food Science and Technology. 71: 36-45. DOI:10.1016/j.tifs.2017.10.018.
Darnoko, D. and Cheryan, M. 2006. Carotenoids from Red Palm Methyl Esters by Nanofiltration. Journal of the American Oil Chemists’ Society. 83(4): 365-370. DOI:10.1007/s11746-006-1214-y.
Chiu, M. C., Coutinho, C. de M. and Gonçalves, L. A. G. 2009. Carotenoids Concentration of Palm Oil Using Membrane Technology. Desalination. 245: 783-786.
Atadashi, I. M. 2015. Purification of Crude Biodiesel Using Dry Washing and Membrane Technologies. Alexandria Engineering Journal. 54(4): 1265-1272. DOI:10.1016/j.aej.2015.08.005.
Shuit, S. H., Ong, Y. T., Lee, K. T., Subhash, B. and Tan, S. H. 2012. Membrane Technology as a Promising Alternative in Biodiesel Production: A Review. Biotechnology Advances. 30 (6): 1364-1380. DOI:10.1016/j.biotechadv.2012.02.009.
Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R. and Sulaiman, N.M.N. 2011. Membrane biodiesel production and refining technology: A critical review. Renewable and Sustainable Energy Reviews. 15(9): 5051-5062. DOI:10.1016/j.rser.2011.07.051.
Diasakou, M., Louloudi, A. and Papayannakos, N. 1998. Kinetics of the Non-catalytic Transesterification of Soybean Oil. Fuel. 77(12).
Noureddini, H. and Zhu, D. 1997. Kinetics of Transesterification of Soybean Oil. JAOCS. Journal of the American Oil Chemists’ Society. 74(11): 1457-1463.
Darnoko, D. and Cheryan, M. 2000. Continuous Production of Palm Methyl Esters. JAOCS, Journal of the American Oil Chemists’ Society. 77(12).
Vicente, G., Martinez, M. and Aracil, J. 2006. Kinetics of Brassica carinata Oil Methanolysis. Energy & Fuels. 20: 1722-1726.
Vicente, G., Martinez, M., Aracil, J. and Esteban, A. 2005. Kinetics of Sunflower Oil Methanolysis. Ind. Eng. Chem. Res. 44: 5447-5454.
Darnoko, D. and Cheryan, M. 2000. Kinetics of Palm Oil Transesterification in a Batch Reactor. JAOCS, Journal of the American Oil Chemists’ Society. 77(12).
Cao, P., Tremblay, A.Y., Dube, M. a and Tremblay, Y. 2009. Kinetics of Canola Oil Transesterification in a Membrane Reactor Kinetics of Canola Oil Transesterification in a Membrane Reactor. Society. 48(January): 2533-2541. DOI:10.1021/ie8009796.
Ho, R. M., Wu, C. H. and Su, A. C. 1990. Morphology of Plastic/Rubber Blends. Polymer Engineering and Science. 30: 511.
Freedman, B., Pryde, E.H. and Mounts, T.L. 1984. Variables Affecting the Yields of Fatty Esters from Transesterified Vegetable Oils. JAOCS, Journal of the American Oil Chemists’ Society. 61: 1638-1643.
Demirbas, A. 2002. Biodiesel from Vegetable Oils Via Transesterification in Supercritical Methanol. Energy Conversion and Management. 43: 2349-2356.
Baroutian, S., Aroua, M. K., Abdul Aziz, A. R. and Sulaiman, N. M. N. 2012. TiO2/Al2O3 Membrane Reactor Equipped with a Methanol Recovery Unit to Produce Palm Oil Biodiesel. International Journal of Energy Research. 36(1): 120-129. DOI:10.1002/er.1784.
Shi, W., He, B., Ding, J., Li, J., Yan, F. and Liang, X. 2010. Preparation and Characterization of the Organic-Inorganic Hybrid Membrane For Biodiesel Production. Bioresource Technology. 101(5): 1501-1505. DOI:10.1016/j.biortech.2009.07.014.
Shi, W., He, B., Cao, Y., Li, J., Yan, F., Cui, Z., Zou, Z., Guo, S. and Qian, X. 2013. Continuous Esterification to Produce Biodiesel by SPES/PES/NWF Composite Catalytic Membrane in Flow-through Membrane Reactor: Experimental and Kinetic Studies. Bioresource Technology. 129: 100-107. DOI:10.1016/j.biortech.2012.10.039.
Zhang, H., Ding, J. and Zhao, Z. 2012. Microwave Assisted Esterification of Acidified Oil from Waste Cooking Oil by CERP/PES Catalytic Membrane for Biodiesel Production. Bioresource Technology. 123: 72-77. DOI:10.1016/j.biortech.2012.06.082.
Casimiro, M. H., Silva, A. G., Alvarez, R., Ferreira, L. M., Ramos, A.M. and Vital, J. 2014. PVA supported Catalytic Membranes Obtained by γ-irradiation for Biodiesel Production. Radiation Physics and Chemistry. 94(1): 171-175. DOI:10.1016/j.radphyschem.2013.05.058.
Shi, W. Y., Li, H. B. and Zhou, R. 2014. A Novel SPES/PES Catalytic Membrane for Production Biodiesel: Optimization by Central Composite Design. Applied Mechanics and Materials. 628 338-341. DOI:10.4028/www.scientific.net/AMM.628.338.
Shi, W., Yang, M., Li, H., Zhou, R. and Zhang, H. 2015. Preparation and Characterization of Sulfonated Poly (Ether Sulfone) (SPES) Phosphotungstic Acid (PWA) Hybrid Membranes for Biodiesel Production. Catalysis Letters. 145(8): 1581-1590. DOI:10.1007/s10562-015-1551-2.
Xu, W., Xu, J., Gao, L. and Xiao, G. 2015. Preparation and Characterization of Inorganic Acid Catalytic Membrane for Biodiesel Production from Oleic Acid. Asia-Pacific Journal of Chemical Engineering. 10(6): 851-857. DOI:10.1002/apj.1922.
Shi, W., Li, H., Su, Y. and Liu, J. 2016. Biodiesel Production by Quaternized Polysulfone Membrane: Experimental and Kinetics Model, in: Energy Procedia, Department of Textiles Engineering, Henan Institute of Engineering, Zhengzhou, China. DOI:10.1016/j.egypro.2016.12.068. 402-406.
Badenes, S. M., Lemos, F. and Cabral, J. M. 2011. Performance of a cutinase Membrane Reactor for the Production of Biodiesel in Organic Media. Biotechnology and Bioengineering. 108(6): 1279-1289. DOI:10.1002/bit.23054.
Li, S.-F., Fan, Y.-H., Hu, R.-F. and Wu, W.-T. 2011. Pseudomonas Cepacia Lipase Immobilized onto the Eectrospun PAN Nanofibrous Membranes for Biodiesel Production from Soybean Oil. Journal of Molecular Catalysis B: Enzymatic. 72(1-2): 40-45. DOI:10.1016/j.molcatb.2011.04.022.
Kuo, C.-H., Peng, L.-T., Kan, S.-C., Liu, Y.-C. and Shieh, C.-J. 2013. Lipase-immobilized Biocatalytic Membranes for Biodiesel Production. Bioresource Technology. 145: 229-232. DOI:10.1016/j.biortech.2012.12.054.
Baroutian, S., Aroua, M. K., Raman, A. A. A. and Sulaiman, N. M. N. 2011. A Packed Bed Membrane Reactor for Production of Biodiesel Using Activated Carbon Supported Catalyst. Bioresource Technology. 102(2): 1095-1102. DOI:10.1016/j.biortech.2010.08.076.
Xu, W., Gao, L., Wang, S. and Xiao, G. 2013. Biodiesel Production from Soybean Oil in a Membrane Reactor Over Hydrotalcite Based Catalyst: An Optimization Study. Energy and Fuels. 27(11): 6738-6742. DOI:10.1021/ef401823z.
Xu, W., Gao, L., Wang, S. and Xiao, G. 2014. Biodiesel Production in a Membrane Reactor using MCM-41 Supported Solid Acid Catalyst. Bioresource Technology. 159: 286-291. DOI:10.1016/j.biortech.2014.03.004.
Xu, W., Gao, L. and Xiao, G. 2015. Biodiesel Production Optimization Using Monolithic Catalyst in a Fixed-bed Membrane Reactor. Fuel. 159: 484-490. DOI:10.1016/j.fuel.2015.07.017.
Falahati, H. and Tremblay, A.Y. 2012. The Effect of Flux and Residence Time in the Production of Biodiesel from Various Feedstocks Using a Membrane Reactor. Fuel. 91(1): 126-133. DOI:10.1016/j.fuel.2011.06.019.
Cheng, L. H., Cheng, Y. F., Yen, S. Y. and Chen, J. 2009. Ultrafiltration of Triglyceride from Biodiesel Using the Phase Diagram of Oil-FAME-MeOH. Journal of Membrane Science. 330(1-2): 156-165. DOI:10.1016/j.memsci.2008.12.057.
Leung, D. Y. C. and Guo, Y. 2006. Transesterification of Neat and Used Frying Oil: Optimization for Biodiesel Production. Fuel Processing Technology. 87: 883-890.
DemirbaÅŸ, A. and Kara, H. 2006. New Options for Conversion of Vegetable Oils to Alternative Fuels. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 28(7): 619-626. DOI:10.1080/009083190951357.
DemirbaÅŸ, A. 1998. Fuel Properties and Calculation of Higher Heating Values of Vegetable Oils. Fuel. 77(9): 1117-1120. DOI:https://doi.org/10.1016/S0016-2361(97)00289-5.
Al-Zuhair, S. 2007. Production of Biodiesel: Possibilities and Challenges. Biofuels, Bioproducts and Biorefining. 1(1): 57-66. DOI:10.1002/bbb.2.
Zhu, M., He, B., Shi, W., Feng, Y., Ding, J., Li, J. and Zeng, F. 2010. Preparation and Characterization of PSSA/PVA Catalytic Membrane for Biodiesel Production. Fuel. 89(9): 2299-2304. DOI:10.1016/j.fuel.2010.02.001.
Guerreiro, L., Castanheiro, J. E., Fonseca, I. M., Martin-Aranda, R. M., Ramos, A. M. and Vital, J. 2006. Transesterification of Soybean Oil Over Sulfonic Acid Functionalised Polymeric Membranes. Catalysis Today. 118(1): 166-171. DOI:https://doi.org/10.1016/j.cattod.2005.12.012.
Tremblay, A. Y., Cao, P. and Dubé, M. A. 2008. Biodiesel Production Using Ultralow Catalyst Concentrations. Energy & Fuels. 22 (4): 2748–2755. DOI:10.1021/ef700769v.
Saracco, G., Neomagus, H. W. J. P., Versteeg, G. F. and Swaaij, W. P. M. va. 1999. High-temperature Membrane Reactors: Potential and Problems. Chemical Engineering Science. 54(13): 1997-2017. DOI:https://doi.org/10.1016/S0009-2509(99)00009-3.
He, H. Y., Guo, X. and Zhu, S. L. 2006. Comparison of Membrane Extraction with Traditional Extraction Methods for Biodiesel Production. JAOCS, Journal of the American Oil Chemists’ Society. 83(5): 457-460. DOI:10.1007/s11746-006-1226-7.
Othman, R., Mohammad, A. W., Ismail, M. and Salimon, J. 2010. Application of Polymeric Solvent Resistant Nanofiltration Membranes for Biodiesel Production. Journal of Membrane Science. 348(1-2): 287-297. DOI:10.1016/j.memsci.2009.11.012.
Gomes, M. C. S., Pereira, N. C. and Barros, S. T. D. d. 2010. Separation of Biodiesel and Glycerol Using Ceramic Membranes. Journal of Membrane Science. 352(1-2): 271-276. DOI:10.1016/j.memsci.2010.02.030.
Aca-Aca, G., LorÃa-Bastarrachea, M.I., Ruiz-Treviño, F.A. and Aguilar-Vega, M. 2018. Transesterification of Soybean oil by PAAc Catalytic Membrane: Sorption Properties and Reactive Performance for Biodiesel Production. Renewable Energy. 116: 250-257. DOI:10.1016/j.renene.2017.09.042.
Sdrula, N. 2010. A Study Using Classical or Membrane Separation in the Biodiesel Process. Desalination. 250(3): 1070-1072. DOI:10.1016/j.desal.2009.09.110.
Saleh, J., Tremblay, A. Y. and Dubé, M. A. 2010. Glycerol Removal from Biodiesel Using Membrane Separation Technology. Fuel. 89(9): 2260-2266. DOI:10.1016/j.fuel.2010.04.025.
Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R. and Sulaiman, N. M. N. 2014. Removal of Residual Palm Oil-based Biodiesel Catalyst Using Membrane Ultra-Filtration Technique: An Optimization Study. Alexandria Engineering Journal. 53(3): 705-715. DOI:10.1016/j.aej.2014.07.002.
Gomes, M. C. S., Arroyo, P. A. and Pereira, N. C. 2013. Influence of Acidified Water Addition on the Biodiesel and Glycerol Separation through Membrane Technology. Journal of Membrane Science. 431: 28-36. DOI:10.1016/j.memsci.2012.12.036.
Purwasasmita, M., Nabu, E. B. P., Khoiruddin and Wenten, I. G. 2015. Non Dispersive Chemical Deacidification of Crude Palm Oil in Hollow Fiber Membrane Contactor. Journal of Engineering and Technological Sciences. 47(4): 426-446. DOI:10.5614/j.eng.technol.sci.2015.47.4.6.
Amelio, A., Loise, L., Azhandeh, R., Darvishmanesh, S., Calabró, V., Degrève, J., Luis, P. and Van Der Bruggen, B. 2016. Purification of Biodiesel Using a Membrane Contactor: Liquid-liquid Extraction. Fuel Processing Technology. 142: 352-360. DOI:10.1016/j.fuproc.2015.10.037.
Alves, M. J., Nascimento, S. M., Pereira, I. G., Martins, M. I., Cardoso, V. L. and Reis, M. 2013. Biodiesel Purification Using Micro and Ultrafiltration Membranes. Renewable Energy. 58(Supplement C): 15-20. DOI:https://doi.org/10.1016/j.renene.2013.02.035.
Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R. and Sulaiman, N. M. N. 2012. High Quality Biodiesel Obtained through Membrane Technology. Journal of Membrane Science. 421-422: 154-164. DOI:10.1016/j.memsci.2012.07.006.
Araujo, P. J. P., Leila, P. and Ravagnani, T. M. K. 2011. Application of Ultrafiltration Membranes in the Separation of Ethylic Route Biodiesel. Chemical Engineering Transactions. 24: 769-774. DOI:10.3303/CET1124129.
Saleh, J., Dubé, M. A. and Tremblay, A. Y. 2010. Effect of Soap, Methanol, and Water on Glycerol Particle Size in Biodiesel Purification. Energy & Fuels. 24(11): 6179-6186. DOI:10.1021/ef1011353.
Wang, Y., Wang, X., Liu, Y., Ou, S., Tan, Y. and Tang, S. 2009. Refining of Biodiesel by Ceramic Membrane Separation. Fuel Processing Technology. 90(3): 422-427. DOI:10.1016/j.fuproc.2008.11.004.
Alves, M. J., Pereira, I. G., Cardoso, V. L. and Reis, M. H. M. 2012. Biodiesel Purification Using Ultrafiltration Ceramic Membrane. Procedia Eng., Federal University of Uberlandia, Brazil. 2045-2047. DOI:10.1016/j.proeng.2012.09.039.
Tan, C.-P. and Nehdi, I. A. 2012. 13 - The Physicochemical Properties of Palm Oil and Its Components BT - Palm Oil, in: AOCS Press. 377-391. DOI:https://doi.org/10.1016/B978-0-9818936-9-3.50016-2.
Kamatou, G. P. P. and Viljoen, A. M. 2017. Comparison of Fatty Acid Methyl Esters of Palm and Palmist Oils Determined by GCxGC–ToF–MS and GC–MS/FID. South African Journal of Botany. 112(Supplement C): 483-488. DOI:https://doi.org/10.1016/j.sajb.2017.06.032.
Nakamura, M. 2001. Fatty Acid Methyl Ester and Its Relative Products from Palm Oil. Journal of Oleo Science. 50(5): 445-452. DOI:10.5650/jos.50.445.
Cheenkachorn, K. and Fungtammasan, B. 2010. Development of Engine Oil Using Palm Oil as a Base Stock for Four-Stroke Engines. Energy. 35(6): 2552-2556. DOI:https://doi.org/10.1016/j.energy.2010.03.002.
Kostik, V., Memeti, S. and Bauer, B. 2013. Fatty Acid Composition of Edible Oils and Fats. Journal of Hygienic Engineering and Design. 4: 112-116.
Pinzi, S., Mata-Granados, J. M., Lopez-Gimenez, F. J., Luque de Castro, M. D. and Dorado, M. P. 2011. Influence of Vegetable Oils Fatty-acid Composition on Biodiesel Optimization. Bioresource Technology. 102(2): 1059-1065. DOI:https://doi.org/10.1016/j.biortech.2010.08.050.
Baroutian, S., Aroua, M. K., Raman, A. A. A. and Sulaiman, N. M. N. 2008. Densities of Ethyl Esters Produced from Different Vegetable Oils. Journal of Chemical & Engineering Data. 53(9): 2222-2225. DOI:10.1021/je8002783.
O’Brien, R. D. 2004. Fats and Oils : Formulating and Processing For Applications. 2nd ed. CRC Press LLC, Florida.
Corley, R. H. V. and Tinker, P. B. 2003. The Oil Palm. 4th ed. Blackwell Science Ltd., Malden, MA.
Puah, C. W., Choo, Y. M., Ma, A. N. and Chuah, C. H. 2007. Cleaner Production Technologies for the Palm Oil Industry. Lipid Technology. 19(2): 31-34. DOI:10.1002/lite.200600015.
Ho, D. S. S. 2007. Recovery of Phytonutrients from Oils, US 2007/0238886 A1, 2007.
Choo, Y. M., Lau, H. L. N., Puah, C. W., Ma, A. N. and Basiron, Y. 2006. Recovery of Palm Phytonutrients, US 7141712 B2, 2006.
May, Y. C., Nang, H. L. L., Ngan, M. A. and Basiron, Y. 2005. Extraction of Palm Vitamin E, Phytosterols and Squalene from Palm Oil, US 2005/0250953 A1, 2005.
Batistella, C. B., Moraes, E. B., Maciel Filho, R. and Maciel, M. R. W. 2002. Molecular Distillation Process for Recovering Biodiesel and Carotenoids from Palm Oil. Applied Biochemistry and Biotechnology. 98-100: 1149-59. DOI:10.1385/ABAB:98-100:1-9:1149.
Tan, B. and Saleh, M. H. 1992. Integrated Process for Recovery of Carotenoids and Tocotrienols from Oil, US 5157132, 1992.
Goh, S. H., Choo, Y. M. and Ong, S. H. 1985. Minor Constituents of Palm Oil. Journal of the American Oil Chemists’ Society. 62 (2): 237-240. DOI:10.1007/BF02541384.
Ooi, C. K., Choo, Y. M., Yap, S. C., Basiron, Y. and Ong, A. S. H. 1994. Recovery of Carotenoids from Palm Oil. Journal of the American Oil Chemists’ Society. 71(4): 423-426. DOI:10.1007/BF02540524.
Arora, S., Manjula, S., Gopala Krishna, A. G. and Subramanian, R. 2006. Membrane Processing of Crude Palm Oil. Desalination. 191(1): 454-466. DOI:10.1016/j.desal.2005.04.129.
Ong, K. K., Fakhru’l-Razi, A., Baharin, B. S. and Hassan, M. A. 1999. Degumming of Crude Palm Oil by Membrane Filtration. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology. 27(5-6): 381-385. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033281650&partnerID=40&md5=15e3a96528cdcaa889d00e39b2bec29a.
Subramanian, R., Nabetani, H., Nakajima, M., Ichikawa, S., Kimura, T. and Maekawa, T. 2001. Rejection of Carotenoids in Oil Systems by a Nonporous Polymeric Composite Membrane. Journal of the American Oil Chemists’ Society. 78(8): 803. DOI:10.1007/s11746-001-0346-4.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.