Using Bayesian Networks to Construct Gene Regulatory Networks from Microarray Data

Authors

  • Ai Kung Tan
  • Mohd Saberi Mohamad

DOI:

https://doi.org/10.11113/jt.v58.1255

Abstract

In this research, Bayesian network is proposed as the model to construct gene regulatory networks from Saccharomyces cerevisiae cell-cycle gene expression dataset and Escherichia coli dataset due to its capability of handling microarray datasets with missing values. The goal of this research is to study and to understand the framework of the Bayesian networks, and then to construct gene regulatory networks from Saccharomyces cerevisiae cell-cycle gene expression dataset and Escherichia coli dataset by developing Bayesian networks using hill-climbing algorithm and Efron’s bootstrap approach and then the performance of the constructed gene networks of Saccharomyces cerevisiae are evaluated and are compared with the previously constructed sub-networks by Dejori [14]. At the end of this research, the gene networks constructed for Saccharomyces cerevisiae not only have achieved high True Positive Rate (more than 90%), but the networks constructed also have discovered more potential interactions between genes. Therefore, it can be concluded that the performance of the gene regulatory networks constructed using Bayesian networks in this research is proved to be better because it can reveal more gene relationships. Dalam penyelidikan ini, Bayesian network adalah dicadangkan sebagai model untuk membina gene regulatory networks dari kitar sel S. cerevisiae set data disebabkan keupayaannya untuk mengendali set data microarray yang mempunyai nilai-nilai yang hilang. Tujuan penyelidikan ini adalah untuk mempelajari dan memahami rekabentuk untuk Bayesian network, dan kemudian untuk membina gene regulatory networks dari data Saccharomyces cerevisiae cell-cycle gene expression dan data Escherichia coli dengan membina model Bayesian networks dengan menggunakan algoritma hill-climbing serta Efron’s bootstrap approach dan gene networks yang dibina untuk Saccharomyces cerevisiae dibandingkan dengan sub-networks yang dibina oleh Dejori [14]. Pada akhir kajian ini, gene networks yang dibina untuk Saccharomyces cerevisiae bukan sahaja telah mencapai True Positive Rate yang tinggi (lebih dari 90%), tetapi gene networks yang dibina juga telah menemui lebih banyak interaksi berpotensi antara gen. Oleh kerana itu, dapat disimpulkan bahawa prestasi gene networks yang dibina menggunakan Bayesian network dalam kajian ini adalah terbukti lebih baik kerana ia boleh mendedahkan lebih banyak hubungan antara gen.

Downloads

Published

2012-11-02

Issue

Section

Science and Engineering

How to Cite

Using Bayesian Networks to Construct Gene Regulatory Networks from Microarray Data. (2012). Jurnal Teknologi (Sciences & Engineering), 58(1), 1-6. https://doi.org/10.11113/jt.v58.1255