PROBABILISTIC GLYCEMIC CONTROL DECISION SUPPORT IN ICU: PROOF OF CONCEPT USING BAYESIAN NETWORK

Authors

  • Asma Abu-Samah Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan Ikram-UNITEN, 43000, Kajang, Selangor, Malaysia http://orcid.org/0000-0001-8514-1459
  • Normy Norfiza Abdul Razak Department of Electronics and Communication, Universiti Tenaga Nasional, Jalan Ikram-UNITEN, 43000, Kajang, Selangor, Malaysia
  • Fatanah Mohamad Suhaimi Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas Penang, Malaysia
  • Ummu Kulthum Jamaludin Human Energy Focus Group, Universiti Malaysia Pahang, 26600, Pekan, Pahang, Malaysia
  • Azrina Md. Ralib Department of Anesthesiology & Intensive Care, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia

DOI:

https://doi.org/10.11113/jt.v81.12721

Keywords:

Personalized Medicine Approach, Glycemic Control, Intensive Care Unit, Decision Support, Bayesian Network

Abstract

Glycemic control in intensive care patients is complex in terms of patients’ response to care and treatment. The variability and the search for improved insulin therapy outcomes have led to the use of human physiology model based on per-patient metabolic condition to provide personalized automated recommendations. One of the most promising solutions for this is the STAR protocol, which is based on a clinically validated insulin-nutrition-glucose physiological model. However, this approach does not consider demographical background such as age, weight, height, and ethnicity. This article presents the extension to intensive care personalized solution by integrating per-patient demographical, and upon admission information to intensive care conditions to automate decision support for clinical staff. In this context, a virtual study was conducted on 210 retrospectives intensive care patients’ data. To provide a ground, the integration concept is presented roughly, but the details are given in terms of a proof of concept using Bayesian Network, linking the admission background and performance of the STAR control. The proof of concept shows 71.43% and 73.90% overall inference precision, and reliability, respectively, on the test dataset. With more data, improved Bayesian Network is believed to be reproduced. These results, nevertheless, points at the feasibility of the network to act as an effective classifier using intensive care units data, and glycemic control performance to be the basis of a probabilistic, personalized, and automated decision support in the intensive care units.

References

Krinsley, J. S., Chase, J. G., Gunst, J., Martensson, J., Schultz, M. J., Taccone, F. S., Wernerman, J., Bohe, J., De Block, C., Desaive, T., and Kalfon, P. 2017. Continuous Glucose Monitoring in the ICU: Clinical Considerations and Consensus. Critical Care. 21(1): 197.

Chase, J. G., Desaive, T., Bohe, J., Cnop, M., De Block, C., Gunst, J., Hovorka, R., Kalfon, P., Krinsley, J., Renard, E., and Preiser, J. C. 2018. Improving Glycemic Control in Critically Ill Patients: Personalized Care to Mimic the Endocrine Pancreas. Critical Care. 22(1): 182.

Chase, J. G., Preiser, J. C., Dickson, J. L., Pironet, A., Chiew, Y. S., Pretty, C. G., Shaw, G. M., Benyo, B., Moeller, K., Safaei, S., and Tawhai, M. 2018. Next-generation, Personalised, Model-based Critical Care Medicine: A State-of-the Art Review of in Silico Virtual Patient Models, Methods, and Cohorts, and How to Validation Them. Biomedical Engineering Online. 17(1): 24.

Saur, N. M., Kongable, G. L., Holewinski, S., O’Brien, K., and Nasraway, S. A. 2013. Software-guided Insulin Dosing: Tight Glycemic Control and Decreased Glycemic Derangements in Critically Ill Patients. Mayo Clinic Proceedings. Elsevier. 88(9): 920-929. DOI: https://doi.org/10.1016/j.mayocp.2013.07.003.

Cochran, S., Miller, E., Dunn, K., Burgess, W. P., Miles, W., and Lobdell, K. 2006. Endotoolâ„¢ Software for Tight Glucose Control for Critically Ill Patients: 260. Critical Care Medicine. 34(12): A68.

Van Herpe, T., Mesotten, D., Wouters, P. J., Herbots, J., Voets, E., Buyens, J., De Moor, B., and Van den Berghe, G., 2013. LOGIC-insulin Algorithm–guided Versus Nurse-directed Blood Glucose Control during Critical Illness: The LOGIC-1 Single-center, Randomized, Controlled Clinical Trial. Diabetes Care. 36(2): 188-194. DOI: https://doi.org/10.2337/dc12-0584.

Evans, A., Shaw, G. M., Le Compte, A., Tan, C. S., Ward, L., Steel, J., Pretty, C. G., Pfeifer, L., Penning, S., Suhaimi, F., and Signal, M. 2011. Pilot Proof of Concept Clinical Trials of Stochastic Targeted (STAR) Glycemic Control. Annals of Intensive Care. 1(1): 38. DOI: https://doi.org/10.1186/2110-5820-1-38.

Lin, J., Lee, D., Chase, J. G., Shaw, G. M., Le Compte, A., Lotz, T., Wong, J., Lonergan, T., and Hann, C. E. 2008. Stochastic Modelling of Insulin Sensitivity and Adaptive Glycemic Control for Critical Care. Computer Methods and Programs in Biomedicine. 89(2): 141-152. DOI: http://dx.doi.org/10.1016/j.cmpb.2007.04.006.

Lin, J., Razak, N. N., Pretty, C. G., Le Compte, A., Docherty, P., Parente, J. D., Shaw, G. M., Hann, C. E., and Chase, J. G. 2011. A Physiological Intensive Control Insulin-Nutrition-Glucose (ICING) Model Validated in Critically Ill Patients. Computer Methods and Programs in Biomedicine. 102(2): 192-205. DOI: https://doi.org/10.1016/j.cmpb.2010.12.008.

Le Compte, A. J., Lee, D. S., Chase, J. G., Lin, J., Lynn, A., and Shaw, G. M. 2010. Blood Glucose Prediction Using Stochastic Modeling in Neonatal Intensive Care. IEEE Transactions on Biomedical Engineering. 57(3): 509-518.

DOI: https://dx.doi.org/10.1109/TBME.2009.2035517.

Abu-Samah, A., Ahamad, N. H., Razak, N. N., Suhaimi, F. M., Jamaluddin, U. K., Ralib, A. M., Mat-Nor, M. B., Pretty, C. G., Dickson, J. L., and Chase, G. 2017. Model-based Insulin-Nutrition Administration for Glycemic Control in Malaysian Critical Care: First Pilot Trial. International Conference for Innovation in Biomedical Engineering and Life Sciences. Springer, Singapore. 189-196. DOI: https://doi.org/10.1007/978-981-10-7554-4_33.

Stewart, K. W., Pretty, C. G., Tomlinson, H., Thomas, F. L., Homlok, J., Noémi, S. N., Illyés, A., Shaw, G. M., Benyó, B., and Chase, J. G. 2016. Safety, Efficacy and Clinical Generalization of the STAR Protocol: A Retrospective Analysis. Annals of Intensive Care. 6(1): 24. DOI: https://doi.org/10.1186/s13613-016-0125-9.

Evans, A., Le Compte, A., Tan, C. S., Ward, L., Steel, J., Pretty, C. G., Penning, S., Suhaimi, F., Shaw, G. M., Desaive, T., and Chase, J. G. 2012. Stochastic Targeted (STAR) Glycemic Control: Design, Safety, and Performance. Journal of Diabetes Science and Technology. 6(1): 102-115. DOI: http://dx.doi.org/ 10.1177/193229681200600113.

Fisk, L. M., Le Compte, A. J., Shaw, G. M., Penning, S., Desaive, T., and Chase, J. G. 2012. STAR Development and Protocol Comparison. IEEE Transactions on Biomedical Engineering. 59(12): 3357-3364. DOI: http://dx.doi.org/ 10.1109/TBME.2012.2214384.

Van den Berghe, G., Wouters, P. J., Bouillon, R., Weekers, F., Verwaest, C., Schetz, M., Vlasselaers, D., Ferdinande, P., and Lauwers, P. 2003. Outcome Benefit of Intensive Insulin Therapy in the Critically Ill: Insulin Dose versus Glycemic Control. Critical Care Medicine. 31(2): 359-366. DOI: 10.1097/01.CCM.0000045568.12881.10.

Marik, P. E. and Preiser, J. C. 2010. Toward Understanding Tight Glycemic Control in the ICU: A Systematic Review and Meta-Analysis. Chest. 137(3): 544-551. DOI: https://doi.org/10.1378/chest.09-1737.

Nice-Sugar Study Investigators. 2009. Intensive Versus Conventional Glucose Control in Critically Ill Patients. New England Journal of Medicine. 360(13): 1283-1297. DOI: https://doi.org/10.1056/NEJMoa0810625.

Pearl, J. 2014. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Elsevier.

Sierra, B., Serrano, N., LarrañAga, P., Plasencia, E. J., Inza, I., JiméNez, J. J., Revuelta, P., and Mora, M. L. 2001. Using Bayesian Networks in the Construction of a Bi-Level Multi-Classifier. A Case Study Using Intensive Care Unit Patients Data. Artificial Intelligence in Medicine. 22(3): 233-248.

Ramon, J., Fierens, D., Güiza, F., Meyfroidt, G., Blockeel, H., Bruynooghe, M., and Van Den Berghe, G. 2007. Mining Data from Intensive Care Patients. Advanced Engineering Informatics. 21(3): 243-256.

Wong, R. S. Y. and Ismail, N. A. 2016. An Application of Bayesian Approach in Modeling Risk of Death in an Intensive Care Unit. PloS ONE. 11(3): e0151949.

Chase, J. G., Suhaimi, F., Penning, S., Preiser, J. C., Le Compte, A. J., Lin, J., Pretty, C. G., Shaw, G. M., Moorhead, K. T., and Desaive, T. 2010. Validation of a Model-based Virtual Trials Method for Tight Glycemic Control in Intensive Care. Biomedical Engineering Online. 9(1): 84. DOI: https://doi.org/10.1186/1475-925X-9-84.

Dickson, J. L., Stewart, K. W., Pretty, C. G., Flechet, M., Desaive, T., Penning, S., Lambermont, B. C., Benyo, B., Shaw, G. M., and Chase, G. 2017. Generalisability of a Virtual Trials Method for Glycaemic Control in Intensive Care. IEEE Transactions on Biomedical Engineering. DOI: http://dx.doi.org/10.1109/TBME.2017.2686432.

Kjærulff, U. B. and Madsen, A. L. 2006. Probabilistic Networks for Practitioners–A Guide to Construction and Analysis of Bayesian Networks and Influence Diagrams. Department of Computer Science, Aalborg University, HUGIN Expert A/S.

Margaritis, D. 2003. Learning Bayesian Network Model Structure from Data (No. CMU-CS-03-153). CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE.

Kohavi, R. 1995. A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model Selection. Ijcai. 14(2): 1137-1145.

Luqman, H. M., Zulkifly, W. Z. W., Rosly, C. Z., Khalid, K., Jamaludin, U. K., Ralib, A. M., and Nor, M. B. M. 2016, October. Performance of Blood Glucose Management Protocols in HTAA Intensive Care Unit. Automatic Control and Intelligent Systems (I2CACIS), IEEE International Conference on IEEE. 156-161. DOI: http://dx.doi.org/10.1109/I2CACIS.2016.7885307.

Dougherty, J., Kohavi, R. and Sahami, M. 1995. Supervised and Unsupervised Discretization of Continuous Features. Machine Learning Proceedings. 194-202.

Chow, C. and Liu, C. 1968. Approximating Discrete Probability Distributions with Dependence Trees. IEEE Transactions on Information Theory. 14(3): 462-467. DOI: https://dx.doi.org/10.1109/TIT.1968.1054142.

Downloads

Published

2019-01-22

Issue

Section

Science and Engineering

How to Cite

PROBABILISTIC GLYCEMIC CONTROL DECISION SUPPORT IN ICU: PROOF OF CONCEPT USING BAYESIAN NETWORK. (2019). Jurnal Teknologi, 81(2). https://doi.org/10.11113/jt.v81.12721