MECHANICAL PROPERTIES OF CARBON NANOTUBES-MODIFIED EPOXY GROUT FOR PIPELINE REPAIR SYSTEM
DOI:
https://doi.org/10.11113/jt.v81.12730Keywords:
Pipeline repair, epoxy grout, infill material, carbon nanotubes, three-roll millAbstract
Epoxy grout properties are theoretically important in predicting the behaviour of the composite pipeline repair system. Usually, it is used as an infill material to fill the gap or irregularity on the surface caused by pipe corrosion and ensures a smooth bed before fibre wrapper can be applied to recover the pipeline strength. In this research, the existing commercially available epoxy resin grout has been strengthened by using Carbon Nanotubes (CNTs) at the amount 0.1% of weight fractional to evaluate their apropos behaviour to the neat epoxy grout. The various mechanical tests were performed on this modified grout to identify its compression, tensile, flexural and lap shear strength. In addition, the dispersion process of CNTs was carried out by using ultrasonication and three-roll mill technique to ensure an optimum enhancement in the properties of the polymer matrix. By comparing the strength, 0.1% of CNTs filler has significantly improved the strength of grout in flexural, tensile and shear bonding but not in compression. In addition, the results also indicate that CNTs filler has increased the modulus of elasticity of the infill material. Therefore, it demonstrates the intrinsic potential of the CNTs in modifying the properties of the epoxy grout.
References
Hopkins, P. 2014. Assessing the Significance of Corrosion in Onshore Oil and Gas Pipelines. Underground Pipeline Corrosion. Elsevier. 62-84. DOI: 10.1533/9780857099266.1.62.
Timashev, S., Bushinskaya, A. 2016. Diagnostics and Reliability of Pipeline Systems. Diagnostics and Reliability of Pipeline Systems. Springer International Publishing: Cham. DOI: 10.1007/978-3-319-25307-7.
Shamsuddoha, M., Islam, M. M., Aravinthan, T., Manalo, A., Lau, K. 2013. Effectiveness of using Fibre-reinforced Polymer Composites for Underwater Steel Pipeline Repairs. Composite Structures. 100: 40-54. DOI: 10.1016/j.compstruct.2012.12.019.
Kou, J., Yang, W. 2011. Application Progress of Oil and Gas Pipeline Rehabilitation Technology. Proceeding of the International Conference on Pipelines and Trenchless Technology (ICPTT). Beijing, China. 26-29 October 2011. 1285-1292.
Cercone, L., Lockwood, J. D. 2005. Review of FRP Composite Materials for Pipeline Repair. Pipelines. 1001-1013.
Saeed, N., Baji, H., Ronagh, H. 2014. Reliability of Corroded Thin Walled Pipes Repaired with Composite Overwrap. Thin-Walled Structure. 85: 201-206. DOI: 10.1016/j.tws.2014.08.020.
Lim, K. S., Azraai, S. N. A., Noor, N. M., Yahaya, N. 2016. An Overview of Corroded Pipe Repair Techniques Using Composite Materials. World Academy of Science, Engineering and Technology. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering.10(1): 19-25.
Raj, K. S., Nirmalkumar, K. 2014. Application of FRP Wraps in Arresting Corrossion of Steel Structure (Review Paper). International Journal of Engineering Science Invention Research & Developmen. I(III): 129-134.
Duell, J. M., Wilson, J. M., Kessler, M. R. 2008. Analysis of a Carbon Composite Overwrap Pipeline Repair System. International Journal of Pressure Vessels and Piping. Elsevier Ltd. 85(11): 782-788. DOI: 10.1016/j.ijpvp.2008.08.001.
Azraai, S. N. A., Lim, K. S., Yahaya, N., Noor, N. M. 2016. Characterization of Mechanical Properties of Graphene-Modified Epoxy Resin for Pipeline Repair. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering. 10(1): 15-18.
Khan, V. C., Balaganesan, G., Kumar Pradhan, A., Sivakumar, M. S. 2017. Nanofillers Reinforced Polymer Composites Wrap to Repair Corroded Steel Pipe Lines. Journal of Pressure Vessel Technology. 139(4): 041411. DOI: 10.1115/1.4036534.
Withers, G., Souza, J., Yu, Y., Cercone, L., Khabashesku, V., Davis, D. 2016. Improved Mechanical Properties of a Water-activated Polyurethane-glass Fiber Composite Reinforced with Amino-functionalized Carbon Nanofibers. Journal of Composite Materials. 50(6): 783-793. DOI: 10.1177/0021998315581510.
Withers, G. J., Yu, Y., Khabashesku, V. N., Cercone, L., Hadjiev, V. G., Souza, J. M., Davis, D. C. 2015. Improved Mechanical Properties of an Epoxy Glass–fiber Composite Reinforced with Surface Organomodified Nanoclays. Composites Part B: Engineering. 72: 175-182. DOI: 10.1016/j.compositesb.2014.12.008.
Baltzis, D., Orfanidis, S., Lekatou, A., Paipetis, A. S. 2016. Stainless Steel Coupled with Carbon Nanotube-modified Epoxy and Carbon Fibre Composites: Electrochemical and Mechanical Study. Plastics, Rubber and Composites. Taylor & Francis. 45(3): 95-105. DOI: 10.1080/14658011.2016.1144339.
Sun, L., Warren, G. L., O’Reilly, J. Y., Everett, W. N., Lee, S. M., Davis, D., Lagoudas, D., Sue, H-J. 2008. Mechanical Properties of Surface-functionalized SWCNT/epoxy Composites. Carbon. 46(2): 320-328. DOI: 10.1016/j.carbon.2007.11.051.
Gryshchuk, O., Karger-Kocsis, J., Thomann, R., Kónya, Z., Kiricsi, I. 2006. Multiwall Carbon Nanotube Modified Vinylester and Vinylester–Based Hybrid Resins. Composites Part A: Applied Science and Manufacturing. 37(9): 1252-1259. DOI: 10.1016/j.compositesa.2005.09.003.
Srivastava, V. K. 2012. Modeling and Mechanical Performance of Carbon Nanotube/Epoxy Resin Composites. Materials & Design. 39: 432-436. DOI: 10.1016/j.matdes.2012.02.039.
Vanaja, A., Jayasankar, S., Kumar, P. S., Padmavathi, T., Gujjaramma, H., Naik, J., Dayananda, G. N. 2014. Mwcnt / Epoxy Composite Film as a Structural Strain Sensor for Micro Air Vehicles. ISSS 2014. Bangalore.
RodrÃguez-Yáñez Y, Bahena-Uribe D, Chávez-MunguÃa B, López-Marure R, González-Monroy S, Cisneros B, Albores A. 2015. Commercial Single-walled Carbon Nanotubes Effects in Fibrinolysis of Human Umbilical Vein Endothelial Cells. Toxicology in Vitro. 29(5): 1201-1214. DOI: 10.1016/j.tiv.2015.02.009.
Siochi, E. J., Kim, J-W., Sauti, G., Cano, R. J., Wincheski, R. A., Ratcliffe, J. G., Czabaj. M., Jensen, B. D., Wise, K. E. 2015. High Volume Fraction Carbon Nanotube Composites for Aerospace Applications. The Composites and Advanced Materials Expo (CAMX). Dallas, TX; United States, 10.
EXAKT Advanced Technologies GmbH. 2015. Three Roll Mills. EXAKT Advanced Technologies GmbH. EXAKT Advanced Technologies GmbH [Brochure]. 1-15.
Jensen, K., Mickelson, W., Kis, A., Zettl, A. 2007. Buckling and Kinking Force Measurements on Individual Multiwalled Carbon Nanotubes. Physical Review B. 76(19): 195436. DOI: 10.1103/PhysRevB.76.195436.
Loos, M. R., Coelho, L. A. F., Pezzin, S. H., Amico, S. C. 2008. Effect of Carbon Nanotubes Addition on The Mechanical and Thermal Properties of Epoxy Matrices. Materials Research. 11(3): 347-352. DOI: 10.1590/S1516-14392008000300019.
T. D. Williamson Inc. 2011. RES-Q ® Composite Wrap for Pipelines–Customer Documentation Manual. T.D. Williamson Inc.
Xiao, H., Song, G., Li, H., Sun, L. 2015. Improved Tensile Properties of Carbon Nanotube Modified Epoxy and Its Continuous Carbon Fiber Reinforced Composites. Polymer Composites. 36(9): 1664-1668. DOI: 10.1002/pc.23076.
Naidu, P. K., Pulagara, N. V., Dondapati, R. S. 2014. Carbon Nanotubes in Engineering Applications: A Review. Progress in Nanotechnology and Nanomaterials. 3: 79-82.
Ruoff, R. S., Qian, D., Liu, W. K. 2003. Mechanical Properties of Carbon Nanotubes: Theoretical Predictions and Experimental Measurements. Comptes Rendus Physique. 4(9): 993-1008. DOI: 10.1016/j.crhy.2003.08.001.
Salvetat, J-P., Bonard, J-M., Thomson, N. H., Kulik, A. J., Forró, L., Benoit, W., Zuppiroli, L. 1999. Mechanical Properties of Carbon Nanotubes. Applied Physics A: Materials Science & Processing. Springer Berlin Heidelberg: Berlin, Heidelberg. 69(3): 255-260. DOI: 10.1007/s003390050999.
Tarfaoui, M., Lafdi, K., El Moumen, A. 2016. Mechanical Properties of Carbon Nanotubes Based Polymer Composites. Composites Part B: Engineering. 103: 113-121. DOI: http://dx.doi.org/10.1016/j.compositesb.2016.08.016.
Azraai, S. N. A. 2017. Characterization of Epoxy Grout as Infill Material for Pipeline Composite Repair System (Unpublished Master’s Thesis). Universiti Teknologi Malaysia.
Mendis, P. 1985. Commercial Applications and Property Requirements for Epoxies in Construction. Special Publication. 89: 127-140. DOI: 10.14359/6246.
Shamsuddoha, M. 2014. Behaviour of Infilled Rehabilitation System with Composites for Steel Pipe. Doctoral thesis. University Of Southern Queensland.
Gkikas, G., Sioulas, D., Lekatou, A., Barkoula, N. M., Paipetis, A. S. 2012. Enhanced Bonded Aircraft Repair Using Nano-modified Adhesives. Materials & Design. Elsevier Ltd. 41: 394-402. DOI: 10.1016/j.matdes.2012.04.052.
Banea, M. D., da Silva, L. F. M. 2009. Adhesively Bonded Joints in Composite Materials: An Overview. Journal of Materials: Design and Applications. 223(1): 1-18. DOI: 10.1243/14644207JMDA219.
Soltannia, B., Taheri, F. 2013. Static, Quasi-Static and High Loading Rate Effects on Graphene Nano-Reinforced Adhesively Bonded Single-Lap Joints. International Journal of Composite Materials. 3(6): 181-190. DOI: 10.5923/j.cmaterials.20130306.07.
ISO. 2006. Petroleum, Petrochemical and Natural Gas Industries – Composite Repairs of Pipework – Qualification and Design, Installation, Testing and Inspection. ISO/TS 2481. Switzerland.
ASME International. 2015. ASME PCC-2–2015. Repair of Pressure Equipment and Piping. The American Society of Mechanical Engineers. New York, USA. 1-216.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.