FOULING MECHANISM OF MICELLE ENHANCED ULTRAFILTRATION WITH SDS SURFACTANT FOR INDIGOZOL DYE REMOVAL

Authors

  • Nita Aryanti Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, 50275, Semarang, Indonesia
  • Andya Saraswati Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, 50275, Semarang, Indonesia
  • Rangga Pratama Putra Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, 50275, Semarang, Indonesia
  • Aininu Nafiunisa Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, 50275, Semarang, Indonesia
  • Dyah Hesti Wardhani Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, 50275, Semarang, Indonesia

DOI:

https://doi.org/10.11113/jt.v80.12741

Keywords:

Membrane separation, Micellar-enhance ultrafiltration, wastewater, indigo sol dye, blocking mechanism

Abstract

Membrane separation technology was proposed to confront the problem of inorganic dye pollutant treatment such as an indigosol dye. A modified ultrafiltration process known as micellar-enhance ultrafiltration (MEUF), was applied to remove three kinds of indigosol dye (Pink IR, Blue O4B, and vat brown). Surfactant at concentration above CMC was added to form micelle structure and solubilize the dye molecule in the feed solution. Maximum dye rejection was achieved by the MEUF of all three kinds of indigosol dye. The  rejection of indigosol pink IR, blue O4B, and brown VAT1 were 94,27%, 95,49% and 99,15%, respectively. In this research, it was found that the MEUF system leads to higher membrane flux, compared to the ultrafiltration system as shown in flux profiles. The difference was expected due to different dye molecular structure. Blocking mechanism was predicted by a mathematical model based on Hermia’s model and depicted a mechanism of complete blocking on most UF process and cake formation on MEUF process. This result confirmed that the MEUF system certainly retained the dye molecule on membrane separation process. However, a comprehensive study is required to increase the membrane flux.

References

Mukimin, A., Vistanty, H., Zen, N., Purwanto, A., Wicaksono, K. A. 2018. Performance of Bioequalization-Electrocatalytic Integrated Method for Pollutants Removal of Hand-drawn Batik Wastewater. Journal of Water Process Engineering. 21: 77-83. Doi.org/10.1016/j.jwpe.2017.12.004.

Pearce, C. I., Lloyd, J. R. and Guthrie, J. T. 2003. The Removal of Colour from Textile Wastewater Using Whole Bacterial Cells: A Review. Dyes Pigments. 58: 179-196.

Doi.org/10.1016/S0143-7208(03)00064-0.

Han, H., Wei, W., Jiang, Z., Lu, J., Zhu, J., Xie, J. 2016. Removal of Cationic Dyes from Aqueous Solution by Adsorption onto Hydrophobic/Hydrophilic Silica Aerogel. Colloids Surf. A: Physicochem. Eng. Aspects. 509: 539-549.

Doi.org/10.1016/j.colsurfa.2016.09.056.

Isah, U. A., Abdulraheem, G., Bala, S., Muhammad, S., Abdullahi, M. 2015. Kinetics Equilibrium and Thermodynamics Studies of C. I. Reactive Blue 19 Dye Adsorption on Coconut Shell Based Activated Carbon. Int. Biodeterior. Biodegrad. 102: 265-273.

Doi.org/10.1016/j.ibiod.2015.04.006.

Nidheesh, P. V., Zhou, M., Oturan, M. A. 2018. An Overview on the Removal of Synthetic Dyes from Water by Electrochemical Advanced Oxidation Processes. Chemosphere. In Press, Accepted Manuscript.

Doi.org/10.1016/j.chemosphere.2017.12.195.

Liang, C., Sun, S., Li, F., Ong, Y., Chung, T. 2014. Treatment of Highly Concentrated Wastewater Containing Multiple Synthetic Dyes by a Combined Process of Coagulation/Flocculation and Nanofiltration. Journal of Membrane Science. 469: 306-315.

Doi.org/10.1016/j.memsci.2014.06.057.

Yeap, K. L., Teng, T. T., Poh, B. T., Morad, N., Lee, K. E. 2014. Preparation and Characterization of Coagulation/Flocculation Behavior of a Novel Inorganic-Organic Hybrid Polymer for Reactive and Disperse Dyes Removal. Chem. Eng. J. 243: 305-314.

Doi.org/10.1016/j.cej.2014.01.004.

Zaghbani, N., Hafiane, A., Dhahbi, M. 2008. Removal of Safranin T from Wastewater Using Micellar Enhanced Ultrafiltration. Desalination. 222: 348-356.

Doi:10.1016/j.desal.2007.01.148.

Luo, F., Zeng, G-M., Huang, J-H., Zhang, C., Fang, Y-Y., Qu, Y-H., Li, X., Lin, D., Zhou, C. F. 2010. Effect of Groups Difference in Surfactant on Solubilization of Aqueous Phenol using MEUF. Journal of Hazardous Materials. 173: 455-461.

Doi.org/10.1016/j.jhazmat.2009.08.106.

Koseoglu-Imer, D. Y. 2013. The Determination of Performances of Polysulfone (PS) Ultrafiltration Membranes Fabricated at Different Evaporation Temperatures for the Pretreatment of Textile Wastewater. Desalination. 316: 110-119.

Doi.org/10.1016/j.desal.2013.02.011.

Huang, J. H., Zhou, C. F., Zeng, G. M., Li, X., Huang, H. J., Niu, J., Li, F., Shi, L. J., He, S. B. 2012. Studies on the Solubilization of Aqueous Methylene Blue in Surfactant using MEUF. Separation and Purification Technology. 98: 497-502.

Doi.org/10.1016/j.seppur.2012.08.012.

Li, X., Zeng, G. M., Huang, J. H., Zhang, C., Fang, Y. Y., Qu, Y. H., Luo, F., Lin, D., Liu, H. L. 2009. Recovery and Reuse Of Surfactant SDS from a MEUF Retentate Containing Cd2+ or Zn2+ by Ultrafiltration. Journal of Membrane Science. 337: 92-97.

doi.org/10.1016/j.seppur.2012.08.012.

Liu, M., Chen, Q., Lu, K., Huang, W., Lü, Z., Zhou, C., Yu, S., Gao, C. 2017. High Efficient Removal of Dyes from Aqueous Solution Through Nanofiltration Using Diethanolamine Modified Polyamide Thin-Film Composite Membrane. Separation and Purification Technology. 173: 135-143.

doi.org/10.1016/j.seppur.2016.09.023.

Víctor-Ortega, M. D., Martins, R. C., Gando-Ferreira, L. M., Quinta-Ferreira, R. M. 2017. Recovery of Phenolic Compounds from Wastewaters through Micellar Enhanced Ultrafiltration. Colloids and Surfaces A. 531: 18-24.

Dx.doi.org/10.1016/j.colsurfa.2017.07.080.

El-Abbassi, A., Khayet, M., Hafidi, A. 2011. Micellar Enhanced Ultrafiltration Process for the Treatment of Olive Mill. Wastewater Water Research. 45: 4522-4530.

Doi:10.1016/j.watres.2011.05.044.

Huang, J., Qia, F., Zeng, G., Shi, L., Li, X., Gu, Y., Shi, Y. 2017. Repeating Recovery and Reuse of SDS Micelles from MEUF Retentate Containing Cd2+ by Acidification UF. Colloids and Surfaces A: Physicochem. Eng. Aspects. 520: 361-368.

Dx.doi.org/10.1016/j.colsurfa.2017.02.001.

Tortora, F., Innocenzi, V., Celso, G. M-d., Vegliò, F., Capocelli, M., Piemonte, V., Prisciandaro M. 2018. Application of Micellar-enhanced Ultrafiltration in the Pre-Treatment of Seawater for Boron Removal. Desalination. 428: 21-28.

Doi.org/10.1016/j.desal.2017.11.016.

Fang, Y. Y., Zeng, G. M., Huang, J. H., Ke, X. U. 2006. Removal of Metal Ions and Dissolved Organic Compounds in the Aqueous Solution via Micellar Enhanced Ultrafiltration. Environ. Sci. 27: 641-646.

Iqbal, J., Kim, H. J., Yang, J. S., Baek, K., Yang, K. W. 2007. Removal of Arsenic from Groundwater by Micellar-Enhanced Ultrafiltration (MEUF). Chemosphere. 66: 970-976.

Doi.org/10.1016/j.chemosphere.2006.06.005.

Zhen, Z., Zeng, G. M., Huang, J. H., Ke, X. U., Fang, Y. Y., Yu, H. 2009. Removal of Zinc Ions from Aqueous Solution Using Micellar-enhanced Ultrafiltration at Low Surfactant Concentrations. Water. S. A. 33: 129-136.

DOI: 10.4314/wsa.v33i1.48787.

Huang, J., Lei, P., Zeng, G., Xue, L., Yong, Z., Liu, L., Fei, L., Qi, C. 2014. Evaluation of Micellar-enhanced Ultrafiltration for Removing Methylene Blue and Cadmium Ion Simultaneously with Mixed Surfactants. Separation and Purification Technology. 125: 83-89.

DOI:10.1016/j.seppur.2014.01.020.

Ahmad, A. L., Puasa, S. W., Zulkali, M. M. D. 2006. Micellar-enhanced Ultrafiltration for Removal of Reactive Dyes from an Aqueous Solution. Desalination. 191: 153-161.

Doi:10.1016/j.desal.2005.07.022.

Purkait, M. K., DasGupta, S., De, S. 2006. Micellar-enhanced Ultraï¬ltration of Eosin Dye Using Hexadecyl Pyridinium Chloride. J. Hazard. Mater. B. 136:972.

doi.org/10.1016/j.jhazmat.2006.01.040.

Bielska, M., Sobczyńska, A., Prochaska, K. 2009. Dye–surfactant Interaction in Aqueous Solutions. Dyes and Pigments. 80(2): 201-205.

Doi:10.1016/j.dyepig.2008.05.009.

Acero, J. L., Benitez, F. J., Real, F. J., Teva, F. 2017. Removal of Emerging Contaminants from Secondary Effluents by Micellar-enhanced Ultrafiltration. Separation and Purification Technology. 181: 123-131.

Dx.doi.org/10.1016/j.seppur.2017.03.021.

Bade, R., Lee, S. H. 2011. A Review of Studies on Micellar Enhanced Ultrafiltration for Heavy Metals Removal from Wastewater. Journal of Water Sustainability. 1(1): 85-102.

DOI:10.11912/jws.1.1.85-102.

Zhang, W., Liang, W., Huang, G., Wei, J., Ding, L., Jaffrin, M. Y. 2015. Studies of Membrane Fouling Mechanisms Involved in the Micellar-enhanced Ultrafiltration Using Blocking Models. RSC Advance. 5(60): 48484-48491.

DOI: 10.1039/C5RA06063J.

Li, X., Zeng, G. M., Huang, J. H., Zhang, D. M., Shi, L. J., He, S. B., Ruan, M. 2011. Simultaneous Removal of Cadmium Ions and Phenol with MEUF using SDS and Mixed Surfactants. Desalination. 276: 136-141.

Doi:10.1016/j.desal.2011.03.041.

Fang, Y. Y., Zeng, G. M., Huang, J. H., Liu, J. X., Xu, X. M., Xu, K., and Qu, Y. H. 2008. Micellar-enhanced Ultrafiltration of Cadmium Ions with Anionic–nonionic Surfactants. Journal of Membrane Science. 320: 514-519.

Doi:10.1016/j.memsci.2008.04.042.

Vinder, A., and SimoniÄ, M. 2012. Removal of AOX from Waste Water with Mixed Surfactants by MEUF. Desalination. 289: 51-57.

Doi:10.1016/j.desal.2012.01.007.

Chattopadhyay, S. N., Pan, N. C., Roy, A. K., and Khan, A. 2009. Dyeing of Jute Fabric Using Indigosol Dyes. Journal of Natural Fibers. 6: 98-107.

DOI: 10.1080/15440470802703596.

Exall, K., Balakrishnan, V. K., Toito, J., and McFadyen, R. 2013. Impact of Selected Wastewater Constituents on the Removal of Sulfonamide Antibiotics via Ultrafiltration and Micellar Enhanced Ultrafiltration. Sci. Total Environ. 461-462: 371-376.

Dx.doi.org/10.1016/j.scitotenv.2013.04.057.

Chang, E.-E., Yang, S.-Y., Huang, C.-P., Liang, C.-H., and Chiang, P.-C. 2011. Assessing the Fouling Mechanisms of High-Pressure Nanofiltration Membrane using the Modified Hermia Model and the Resistance-in-Series Model. Separation and Purification Technology. 79: 329-336.

Doi:10.1016/j.seppur.2011.03.017.

Aoudia, M., Allal, N., Djennet, A., and Toumi, L. 2003. Dynamic Micellar Enhanced Ultrafiltration: Use of Anionic (SDS)–nonionic (NPE) System to Remove Cr3+ at Low Surfactant Concentration. Journal of Membrane Science. 217: 181-192.

Doi.org/10.1016/S0376-7388(03)00128-5

Zhang, Z., Zeng, G. M., Huang, J. H., Fang, Y. Y., Xu, K., Qu, Y. H., Yang, C., and Li, J. B. 2009. Removal of Zinc Ions from Aqueous Solution Using Micellar-Enhanced Ultrafiltration at Low Surfactant Concentrations. Water S. A. 33(1): 129-136.

DOI: 10.4314/wsa.v33i1.48787.

Nataraj, S., Schomacker, R., Kraume, M., Mishra, I. M., and Drews, A. 2008. Analyses of Polysaccharide Fouling Mechanisms during Crossflow Membrane Filtration. Journal of Membrane Science. 308: 152-161.

Doi.org/10.1016/j.memsci.2007.09.060.

Aryanti, N., Sandria, F. K. I., and Wardhani, D. H. 2017. Blocking Mechanism of Ultrafiltration and Micellar-Enhanced Ultrafiltration Membrane for Dye Removal from Model Waste Water. Advanced Science Letters. 23: 2598-2600.

DOI: 10.1166/asl.2017.8730.

Grzegorzek, M., and Majewska-Nowak, K. 2018. The Use of Micellar-enhanced Ultrafiltration (MEUF) for Fluoride Removal from Aqueous Solutions. Separation and Purification Technology. 195: 1-11.

Doi.org/10.1016/j.seppur.2017.11.022.

Sarkar, B., DasGupta, S., De, S. 2009. Application of External Electric Field to Enhance the Permeate Flux During Micellar Enhanced Ultrafiltration. Separation and Purification Technology. 66: 263-272.

Doi:10.1016/j.seppur.2009.01.003.

Downloads

Published

2018-05-16

How to Cite

FOULING MECHANISM OF MICELLE ENHANCED ULTRAFILTRATION WITH SDS SURFACTANT FOR INDIGOZOL DYE REMOVAL. (2018). Jurnal Teknologi, 80(3-2). https://doi.org/10.11113/jt.v80.12741