• Endah R Dyartanti Department of Chemical Engineering, Universitas Sebelas Maret, Surakarta, Indonesia
  • Agus Purwanto Department of Chemical Engineering, Universitas Sebelas Maret, Surakarta, Indonesia
  • I Nyoman Widiasa Department of Chemical Engineering, Diponegoro University, Semarang, Indonesia
  • Heru Susanto Department of Chemical Engineering, Diponegoro University, Semarang, Indonesia



NIPS, PVDF, Thermodynamic parameter, PVP, and nano-


The composition of both the polymer solution and the non-solvent determines the resulted membrane morphology during membrane preparation through non-solvent induced phase separation (NIPS) method. In the porous polymer electrolyte membranes (PEMs), a specified porosity and uniform pore membranes are required; therefore prediction of membrane morphology is essential. The Dimensional parameter of thermodynamic was determined to find the diffusional rate between DMAc solvent and Water nonsolvent during the membranes preparation. The influences of the addition of nano-clay as filler and polyvinylpyrrolidone (PVP) addition as pore-forming agent on the thermodynamic parameter were investigated. The resulted nanocomposites were characterized by measuring their porosity and electrolyte uptake as well as by a scanning electron microscopy. The composition of non-solvent required to induce phase separation of the casting solution was determined by cloud point experiment. By adding the content of additives the binodal line shifts to polymer/solvent axis, moreover MG reduces and DSBC raises and the thermodynamic parameter increased. It was obtained that the solubility parameters (Di/j) between solvent-additive are DDMAc/nano-clay  =  0.787 (MPa0.5), DPVP/DMAc = 5.536 (MPa0.5), and The Interaction parameters (c) are  cDMAc/nano-clay = 1.661 (MPa0.5), cDMAc/PVP = 1.449 (MPa0.5).


Sadrzadeh, M., Bhattacharjee, S. 2013 Rational Design of Phase Inversion Membranes by Tailoring Thermodynamics and Kinetics of Casting Solution Using Polymer Additives. J. Memb. Sci. 441: 31-44.

DOI: 10.1016/j.memsci.2013.04.009.

Han, M.-J., Nam, S.-T. 2002, Thermodynamic and Rheological Variation in Polysulfone Solution by PVP and Its Effect in the Preparation of Phase Inversion Membrane. J. Memb. Sci. 202(1): 55-61.


Costa, C. M., Rodrigues, L. C., Sencadas, V., Silva, M. M., Rocha, J. G., Lanceros-Méndez, S. 2012 Effect of Degree of Porosity on the Properties of Poly (Vinylidene Fluoride–Trifluorethylene) for Li-Ion Battery Separators. J. Memb. Sci. 407: 193-201


Jeong, H. S., Kim, D. W., Jeong, Y. U., Lee, S. Y. 2010 Effect of Phase Inversion on Microporous Structure Development of Al2O3/poly(vinylidene Fluoride-hexafluoropropylene)-based Ceramic Composite Separators for lithium-ion Batteries. J. Power Sources. 195(18): 6116–6121.

DOI: 10.1016/j.jpowsour.2009.10.085.

Mohsenpour, S., Safekordi, A., Tavakolmoghadam, M., Rekabdar, F., Hemmati, M. 2016 Comparison of the Membrane Morphology based on the Phase Diagram using PVP as an Organic Additive and TiO 2 as an Inorganic Additive. Polymer (Guildf). 97: 559-568.

DOI: 10.1016/j.polymer.2016.05.069.

Saljoughi, E., Mohammadi, T. 2009 Cellulose Acetate (CA)/polyvinylpyrrolidone (PVP) Blend Asymmetric Membranes: Preparation, Morphology and Performance. Desalination. 249(2): 850-854.

DOI: 10.1016/j.desal.2008.12.066.

Xiao, W., Li, X., Wang, Z., Guo, H., Li, Y., Yang, B. 2012. Performance of PVDF-HFP-based Gel Polymer Electrolytes with Different Pore Forming Agents. Iran. Polym. J. 21(11): 755-761.

DOI: 10.1007/s13726-012-0081-7.

Liu, J., Wu, X., He, J., Li, J., Lai, Y. 2017 Preparation and Performance of a Novel Gel Polymer Electrolyte based on Poly(vinylidene fluoride)/graphene Separator for Lithium Ion Battery. Electrochim. Acta. 235: 500-507.

DOI: 10.1016/j.electacta.2017.02.042.

Guillen, G. R., Pan, Y., Li, M., Hoek, E. M. V. 2011 Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Ind. Eng. Chem. Res. 50(7): 3798-3817.

DOI: 10.1021/ie101928r.

Li, N. N., Fane, A. G., Ho, W. S. W., Matsuura, T. 2008 Advanced Membrane Technology and Applications. Li, N. N., Fane, A. G., Ho, W. S. W., Matsuura, T., Eds. John Wiley & Sons, Inc.: Hoboken, NJ, USA.

DOI: 10.1002/9780470276280.

Liu, F., Hashim, N. A., Liu, Y., Abed, M. R. M., Li, K. 2011 Progress in the Production and Modification of PVDF Membranes. J. Memb. Sci. 375(1-2): 1-27.

DOI: 10.1016/j.memsci.03.014.

Munari, S., Bottino, A., Capannelli, G., Moretti, P., Petit Bon, P. 1988. Preparation and Characterization of Polysulfone-Polyvinylpyrrolidone based Membranes. Desalination. 70(1-3): 265-275.

DOI: 10.1016/0011-9164(88)85059-8.

Kim, J.-H., Lee, K.-H. 1998. Effect of PEG Additive on Membrane Formation by Phase Inversion. J. Memb. Sci. 138(2): 153-163.

DOI: 10.1002/9780470276280.

Lang, W., Guo, Y., Chu, L. 2011 Evolution of the Precipitation Kinetics, Morphologies, Permeation Performances, and Crystallization Behaviors of Polyvinylidene Fluoride (PVDF) Hollow Fiber Membrane by Adding Different Molecular Weight Polyvinylpyrrolidone (PVP). Polym. Adv. Technol. 22(12): 1720-1730.

DOI: 10.1002/pat.1662.

Sun, A. C., Kosar, W., Zhang, Y., Feng, X. 2013 A Study of Thermodynamics and Kinetics Pertinent to Formation of PVDF Membranes by Phase Inversion. Desalination. 309: 156-164.

DOI: 10.1016/j.desal.2012.10.005.

Prasanth, R., Shubha, N., Hng, H. H., Srinivasan, M. 2013 Effect of Nano-clay on Ionic Conductivity and Electrochemical Properties of Poly(vinylidene fluoride) based Nanocomposite Porous Polymer Membranes and Their Application as Polymer Electrolyte in Lithium Ion Batteries. Eur. Polym. J. 49(2): 307-318.

DOI: 10.1016/j.eurpolymj.2012.10.033.

Deka, M., Kumar, A. 2011 Electrical and Electrochemical Studies of Poly(vinylidene fluoride)–clay Nanocomposite Gel Polymer Electrolytes for Li-ion Batteries. J. Power Sources. 196(3): 1358-1364.

DOI: 10.1016/j.jpowsour.2010.09.035.

Wang, M., Zhao, F., Guo, Z., Dong, S. 2004, Poly(vinylidene Fluoride-hexafluoropropylene)/organo-montmorillonite Clays Nanocomposite Lithium Polymer Electrolytes. Electrochim. Acta. 49(21): 3595-3602.

DOI: 10.1016/j.electacta.2004.03.028.

Chang, X., Wang, Z., Quan, S., Xu, Y., Jiang, Z., Shao, L. 2014 Exploring the Synergetic Effects of Graphene Oxide (GO) and Polyvinylpyrrodione (PVP) on Poly(vinylylidenefluoride) (PVDF) Ultrafiltration Membrane Performance. Appl. Surf. Sci. 316(1): 537-548.

DOI: 10.1016/j.apsusc.2014.07.202.

Guo, Y. W., Cui, W. W., Xu, W. H., Jiang, Y., Liu, H. H., Xu, J. Y., Gao, Z. Q., Liu, L. Z. 2014, Effect of PVP Hydrophilic Additive on the Morphology and Properties of PVDF Porous Membranes. Adv. Mater. Res. 981: 891-894.

DOI: 10.4028/

Raghavan, P., Zhao, X., Kim, J.-K., Manuel, J., Chauhan, G. S., Ahn, J.-H., Nah, C. 2008. Ionic Conductivity and Electrochemical Properties of Nanocomposite Polymer Electrolytes Based on Electrospun Poly(vinylidene fluoride-co-hexafluoropropylene) with Nano-sized Ceramic Fillers. Electrochim. Acta. 54(2): 228-234.

DOI: 10.1016/j.electacta.2008.08.007.

Van Krevelen, D. W., Te Nijenhuis, K. 2009. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions. Elsevier.

DOI: 10.1016/0160-9327(92)90023-i.

Hansen, C. M. 2007/ Hansen Solubility Parameters: A User’s Handbook. CRC Press.

DOI: 10.1201/9781420006834.

Li, Y., Xiao, W., Li, X., Miao, C., Guo, H., Wang, Z. 2014, Study on Performance of a Novel P(VDF-HFP)/SiO2 Composite Polymer Electrolyte Using Urea as Pore-forming Agent. Ionics (Kiel). 20(9): 1217-1224.

DOI: 10.1007/s11581-014-1081-8.

Susanto, H., Ulbricht, M. 2009 Characteristics, Performance and Stability of Polyethersulfone Ultrafiltration Membranes Prepared by Phase Separation Method Using Different Macromolecular Additives. J. Memb. Sci. 327(1-2): 125-135.

DOI: 10.1016/j.memsci.2008.11.025.




How to Cite