• Kowit Lertwittayanon Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand




Agar, gelcasting, ceramic, porous, membrane


Disc alumina membrane supports were formed through agar gelcasting method. The agar gelcasting was expected to be environmentally-friendly forming technique using simple equipment. Final agar amounts (0.25 – 0.75wt%) in gelcasting mixtures were varied to find the optimum condition of shaping and the desired microstructure of sintered supports. The gelcasting mixtures were prepared from non-reactive grade Al2O3 and porcelain at the ratio of 98.5:1.5 by weight. The porcelain addition allowed the membrane support to have high strength at lower sintering temperature. When the final agar amounts increased from 0.25 to 0.75wt%, the dried, gelcast supports tended to have rough surface and subsequently resulting in crack. TGA profiles confirmed that there was interaction between agar chains and kaolin particles on cooling the gelcast supports leading to different microstructures after sintering. The final agar amount of 0.5 wt% provided the highest porosity of 48.9% and the highest relative density of 61.5%. Additionally, the average pore size of 1.5 µm was obtained at the final agar amount of 0.5 wt% suitable for using as asymmetric membrane support or microfiltration membrane.   


Jeong, Y., Cho, K., Kwon, E. E., Tsang, Y. F., Rinklebe, J., Park, C. 2017. Evaluating the Feasibility of Pyrophyllite-Based Ceramic Membranes for Treating Domestic Wastewater in Anaerobic Ceramic Membrane Bioreactors. Chemical Engineering Journal. 328(7): 567-573.

DOI: https://doi.org/10.1016/j.cej.2017.07.080.

Li, W., Ling, G., Lei, F., Li, N., Peng, W., Li, K., Lu, H., Hang, F., Zhang, Y. 2018. Ceramic Membrane Fouling and Cleaning During Ultrafiltration of Limed Sugarcane Juice. Separation and Purification Technology. 190(26): 9-24.

DOI: https://doi.org/10.1016/j.seppur.2017.08.046.

Song, I. H., Bae, B. S., Ha, J. H., Lee, J. 2017. Effect of Hydraulic Pressure on Alumina Coating on Pore Characteristics of Flat-Sheet Ceramic Membrane. Ceramics International. 43(13): 10502-10507.

DOI: https://doi.org/10.1016/j.ceramint.2017.05.098.

Oun, A., Tahri, N., Chergui, S. M., Carbonnier, B., Majumdar, S., Sarkar, S., Sahoo, G. C., Amar, R. B. 2017. Tubular Ultrafiltration Ceramic Membrane Based on Titania Nanoparticles Immobilized on Macroporous Clay-Alumina Support: Elaboration, Characterization and Application to Dye Removal. Separation and Purification Technology. 188: 126-133.

DOI: https://doi.org/10.1016/j.seppur.2017.07.005.

Almandoz, M. C., Pagliero, C. L., Ochoa, N. A., Marchese, J. 2015. Composite Ceramic Membranes from Natural Aluminosilicates for Microfiltration Applications. Ceramics International. 41(4): 5621-5633.

DOI: https://doi.org/10.1016/j.ceramint.2014.12.144.

Guo, L., Yang, J., Feng, Y., Qiu, T. 2018. Non-Aqueous Gelcasting of AlN Ceramics Using a Low-Toxicity Monomer (DMAA) as Gelling Agent. Ceramics International. 44(2): 1621-1626.

DOI: https://doi.org/10.1016/j.ceramint.2017.10.083.

Zhang, C., Yang, J., Qiu, T. 2012. Preparation of ZTA Ceramic by Aqueous Gelcasting with a Low-Toxic Monomer DMAA. Ceramics International. 38(4): 3063-3068.

DOI: https://doi.org/10.1016/j.ceramint.2011.12.004.

Millán, A. J., Moreno, R., Nieto, M. I. 2002. Thermogelling Polysaccharides for Aqueous Gelcasting—Part I: A Comparative Study of Gelling Additives. Journal of European Ceramic Society. 22(13): 2209-2215.

DOI: https://doi.org/10.1016/S0955-2219(01)00532-5.

Millán, A. J., Nieto, M. I., BaudÃn, C., Moreno, R. 2002. Thermogelling Polysaccharides for Aqueous Gelcasting—Part II: Influence of Gelling Additives on Rheological Properties and Gelcasting of Alumina. Journal of European Ceramic Society. 22(13): 2217-2222.

DOI: https://doi.org/10.1016/S0955-2219(01)00533-7.

Millán, A. J., Nieto, M. I., Moreno, R., BaudÃn, C. 2002. Thermogelling Polysaccharides for Aqueous Gelcasting—Part III: Mechanical and Microstructural Characterization of Green Alumina Bodies. Journal of European Ceramic Society. 22(13): 2223-2230.

DOI: https://doi.org/10.1016/S0955-2219(01)00534-9.

Munro, C. D., Plucknett, K. P. 2011. Agar-Based Aqueous Gel Casting of Barium Titanate Ceramics. International Journal of Applied Ceramic Technology. 8(13): 597-609.

DOI: https://doi.org/10.1111/j.1744-7402.2009.02466.x.

Boral. S., Saxena. A., Bohidar. H. B. 2010. Syneresis in Agar Hydrogels. International Journal of Biological Macromolecules. 46(2): 232-236.

DOI: https://doi.org/10.1016/j.ijbiomac.2009.12.008.

Matsukawa, S., Ding, Y., Zhao, Q., Mogi, A., Tashiro, Y., Ogawa, H. 2014. Effect of Solvent Transfer in Agar Gels on Stress Relaxation under Large Deformation. Carbohydrate Polymers. 109: 166-170.

DOI: https://doi.org/10.1016/j.carbpol.2014.03.055.

Potoczek, M. 2008. Gelcasting of Alumina Foams Using Agarose Solutions. Ceramics International. 34(3): 661-667.

DOI: https://doi.org/10.1016/j.ceramint.2007.02.001.

Prasad, K., Siddhanta, A. K., Rakshit, A. K., Bhattacharya, A., Ghosh, P. K. 2005. On the Properties of Agar Gel Containing Ionic and Non-ionic Surfactants. International Journal of Biological Macromolecules. 35(10): 135-144.

DOI: https://doi.org/10.1016/j.ijbiomac.2005.01.004.

Bristow, T. F., Bish, D. L., Vaniman, D. T., Morris, R. V., Blake, D. F., Grotzinger, J. P., Rampe, E. B., Crisp, J. A., Achilles, C. N., Ming, D. W., Ehlmann, B. L., King, P. L., Bridges, J. C., Eigenbrode, J. L., Sumner, D. Y., Chipera, S. J., Moorokian, J. M., Treiman, A. H., Morrison, S. M., Downs, R. T., Farmer, J. D., Marais, D. D., Sarrazin, P., Floyd, M. M., Mischna, M. A., McAda, A. C. 2015. The Origin and Implications of Clay Minerals from Yellowknife Bay, Gale Crater, Mars. The American Mineralogist. 100(13): 824–836.

Santacruz I., Nieto M. I., Moreno R., Ferrandino P., Salomoni A., Stamenkovic I. 2003. Aqueous Injection Moulding of Porcelains. Journal of European Ceramic Society. 23(12): 2053-2060.

DOI: https://doi.org/10.1016/S0955-2219(03)00018-9.

Chen, B. 2004. Polymer–Clay Nanocomposites: an Overview with Emphasis on Interaction mechanisms. British Ceramic Transaction. 103 (6): 241-249.

DOI: https://doi.org/10.1179/096797804X4592.

Pinnavaia, T. J., Beall G. W. 2001. Polymer-Clay Nanocomposites. Wiley.

Sikdar, D., Katti, D. R., Katti, K. S. 2008. The Role of Interfacial Interactions on the Crystallinity and Nanomechanical Properties of Clay–Polymer Nanocomposites: A Molecular Dynamics Study. Journal of Applied Polymer Science.107 (5): 3137-3148.

DOI: http://dx.doi.org/10.1002/app.27504.




How to Cite

EFFECT OF AGAR-KAOLIN INTERACTION IN GELCASTING MIXTURES ON FORMING OF ALUMINA MEMBRANE SUPPORT. (2018). Jurnal Teknologi, 80(3-2). https://doi.org/10.11113/jt.v80.12770