Hybrid Neural Models For Rice Yields Times Forecasting
DOI:
https://doi.org/10.11113/jt.v52.128Abstract
In this paper, time series prediction is considered as a problem of missing value. A model for the determination of the missing time series value is presented. The hybrid model integrating autoregressive intergrated moving average (ARIMA) and artificial neural network (ANN) model is developed to solve this problem. The developed models attempts to incorporate the linear characteristics of an ARIMA model and nonlinear patterns of ANN to create a hybrid model. In this study, time series modeling of rice yield data in Muda Irrigation area. Malaysia from 1995 to 2003 are considered. Experimental results with rice yields data sets indicate that the hybrid model improve the forecasting performance by either of the models used separately. Key words: ARIMA; Box and Jenkins; neural networks; rice yields; hybrid ANN modelDownloads
Published
2012-01-20
Issue
Section
Science and Engineering
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.
How to Cite
Hybrid Neural Models For Rice Yields Times Forecasting. (2012). Jurnal Teknologi (Sciences & Engineering), 52(1), 135–147. https://doi.org/10.11113/jt.v52.128