ASSESSMENT ON BIOACTIVE COMPOUNDS AND THE EFFECT OF MICROWAVE ON PITAYA PEEL

Authors

  • Norashikin Mat Zain Faculty of Chemical Engineering and Natural Resources, University Malaysia Pahang, 26300, Gambang, Pahang, Malaysia
  • Muhd Azlan Nazeri Faculty of Chemical Engineering and Natural Resources, University Malaysia Pahang, 26300, Gambang, Pahang, Malaysia http://orcid.org/0000-0001-6120-7345
  • Nurul Aini Azman Faculty of Chemical Engineering and Natural Resources, University Malaysia Pahang, 26300, Gambang, Pahang, Malaysia

DOI:

https://doi.org/10.11113/jt.v81.12847

Keywords:

Microwave assisted extraction (MAE), pitaya peel, pitaya extract, phenolic compound, time-kill kinetics

Abstract

Over the years, a wide variety of natural colour sources have been identified. One source, the pitaya fruit is known to impart colours to products, such as food and drink. However, there have been limited studies done to determine phenolic compounds and antibacterial activity of the pitaya peel (H.polyrhizus) via Microwave Assisted Extraction (MAE) method. Both this information can escalate the potential role of pitaya fruit as a natural colour source. This study aimed to identify the types of bioactive compounds (phenolic compounds) and antibacterial activity of pitaya peel. To achieve this objective, MAE was used to extract bioactive compounds from the pitaya peel as it maintained the integrity of the compound. Based on the results, 13 types of phenolic compounds were identified from the pitaya peel extract via qualitative research using library database matching which include quinic acid, cinnamic acid, quinic acid isomer, 3,4-dihydroxyvinylbenzene, isorhamnetin 3-O-rutinoside, myricetin rhamno-hexoside, 3,30-di-O-methyl ellagic acid, isorhamnetin aglycone monomer, apigenin, jasmonic acid, oxooctadecanoic acid, 2 (3,4-dihydroxyphenyl)-7-hydroxy-5-benzene propanoic acid and protocatechuic hexoside conjugate.  The pitaya peel extract was also found to have small antibacterial effect on the Gram-positive, Staphylococcus aureus (S.aureus) and Gram- negative, Escherichia coli (E.coli). The SEM demonstrated that cell wall disruption of pitaya peel caused by microwave radiation from MAE appeared to be the main reason for rapid extraction of bioactive compounds. In conclusion, the study established that pitaya peel extract is a natural colour source with an abundance of phenolic compounds and minimal antibacterial activity, which could be used in the food and cosmetic industries. 

References

Kennedy, D. O. and Wightman, E. L. 2011. Herbal Extracts and Phytochemicals: Plant Secondary Metabolites and The Enhancement of Human Brain Function. Advances in Nutrition: An International Review Journal. 2(1): 32-50.

Figueiredo, A. C., Barroso, J. G., Pedro, L. G., and Scheffer, J. J. 2008. Factors Affecting Secondary Metabolite Production in Plants: Volatile Components and Essential Oils. Flavour and Fragrance Journal. 23(4): 213-226.

Norashikin, M. and Ibrahim, M. 2010. Fabrication and Characterization of Sawdust Composite Biodegradable Film. World Academy of Science, Engineering and Technology. 65: 864-868.

Ham, S.-S., Kim, S.-H., Moon, S.-Y., Chung, M. J., Cui, C.-B., Han, E.-K., Chung, C.-K., and Choe, M. 2009. Antimutagenic Effects of Subfractions of Chaga Mushroom (Inonotus Obliquus) Extract. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 672(1): 55-59.

Mabona, U., Viljoen, A., Shikanga, E., Marston, A., and Van Vuuren, S. 2013. Antimicrobial Activity of Southern African Medicinal Plants with Dermatological Relevance: From an Ethnopharmacological Screening Approach, to Combination Studies and the Isolation of a Bioactive Compound. Journal of Ethnopharmacology. 148(1): 45-55.

Pereira, J. A., Oliveira, I., Sousa, A., Ferreira, I. C., Bento, A., and Estevinho, L. 2008. Bioactive Properties and Chemical Composition of Six Walnut (Juglans regia L.) Cultivars. Food and Chemical Toxicology. 46(6): 2103-2111.

Fattouch, S., Caboni, P., Coroneo, V., Tuberoso, C., Angioni, A., Dessi, S., Marzouki, N., and Cabras, P. 2008. Comparative Analysis of Polyphenolic Profiles and Antioxidant and Antimicrobial Activities of Tunisian Pome Fruit Pulp and Peel Aqueous Acetone Extracts. Journal of Agricultural and Food Chemistry. 56(3): 1084-1090.

Ismail, N. S. M., Ramli, N., Hani, N. M., and Meon, Z. 2012. Extraction and Characterization of Pectin from Dragon Fruit (Hylocereus polyrhizus) Using Various Extraction Conditions. (Pengekstrakan dan Pencirian Pektin Daripada Buah Naga (hylocereus polyrhizus) Menggunakan Pelbagai Keadaan Pengekstrakan). Sains Malaysiana. 41(1): 41-45.

Soong, Y.-Y. and Barlow, P. J. 2004. Antioxidant Activity and Phenolic Content of Selected Fruit Seeds. Food Chemistry. 88(3): 411-417.

Lourith, N. and Kanlayavattanakul, M. 2013. Antioxidant and Stability of Dragon Fruit Peel Colour. Agro Food Ind Hi-Tech. 24: 56-8.

Tenore, G. C., Novellino, E., and Basile, A. 2012. Nutraceutical Potential and Antioxidant Benefits of Red Pitaya (Hylocereus polyrhizus) Extracts. Journal of Functional Foods. 4(1): 129-136.

Grimaldo, O., Terrazas, T., García-Velásquez, A., Cruz-Villagas, M., and Ponce-Medina, J. F. 2007. Morphometric Analysis of 21 Pitahaya (Hylocereus undatus) Genotypes. Journal of the Professional Association for Cactus Development. 9: 99-117.

Ferreres, F., Grosso, C., Gil-Izquierdo, A., Valentão, P., Mota, A. T., and Andrade, P. B. 2017. Optimization of the Recovery of High-value Compounds from Pitaya Fruit By-Products Using Microwave-assisted Extraction. Food Chemistry. 230: 463-474.

Vinardell, M., Ugartondo, V., and Mitjans, M. 2008. Potential Applications of Antioxidant Lignins from Different Sources. Industrial Crops and Products. 27(2): 220-223.

Rodrigues, F., Palmeira-de-Oliveira, A., das Neves, J., Sarmento, B., Amaral, M. H., and Oliveira, M. B. 2013. Medicago spp. Extracts as Promising Ingredients for Skin Care Products. Industrial Crops and Products. 49: 634-644.

Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K., and Latha, L. Y. 2011. Extraction, Isolation and Characterization of Bioactive Compounds from Plants’ Extracts. African Journal of Traditional, Complementary and Alternative Medicines. 8(1).

Azmir, J., Zaidul, I., Rahman, M., Sharif, K., Mohamed, A., Sahena, F., Jahurul, M., Ghafoor, K., Norulaini, N., and Omar, A. 2013. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. Journal of Food Engineering. 117(4): 426-436.

Rombaut, N., Tixier, A. S., Bily, A., and Chemat, F. 2014. Green Extraction Processes of Natural Products as Tools for Biorefinery. Biofuels, Bioproducts and Biorefining. 8(4): 530-544.

Michel, T., Destandau, E., and Elfakir, C. 2011. Evaluation of a Simple and Promising Method for Extraction of Antioxidants from Sea Buckthorn (Hippophaë rhamnoides L.) berries: Pressurised Solvent-free Microwave Assisted Extraction. Food Chemistry. 126(3): 1380-1386.

Cong, X., Bing, W., Yi-Qiong, P., Jian-Sheng, T., and Tong, Z. 2017. Advances in Extraction and Analysis of Phenolic Compounds from Plant Materials. Chinese Journal of Natural Medicines. 15(10): 721-731.

Balouiri, M., Sadiki, M., and Ibnsouda, S. K. 2016. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. Journal of Pharmaceutical Analysis. 6(2): 71-79.

Chaiwut, P., O-ki-la, A., Phuttisatien, I., Thitilertdecha, N., and Pintathong, P. 2012. Extraction and Stability of Cosmetic Bioactive Compounds. Paper Presented at the Mae Fah Luang University International Conference, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand. retrieved from

Nazeria, M. A. and Zainb, N. M. 2018. Effect of Different Operating Parameters on Extraction of Active Compounds from Pitaya Peel By Microwave Assisted Extraction (Mae). Jurnal TeknologI. 80(2): 51-58.

Zain, N. and Nazeri, M. 2016. Antioxidant and Mineral Content of Pitaya Peel Extract Obtained Using Microwave Assisted Extraction (MAE). Australian Journal of Basic and Applied Sciences. 10(17): 63-68.

Souza, Bataglion, G. A., da Silva, F. M., de Almeida, R. A., Paz, W. H., Nobre, T. A., Marinho, J. V., Salvador, M. J., Fidelis, C. H., and Acho, L. D. 2016. Phenolic and Aroma Compositions of Pitomba Fruit (Talisia esculenta Radlk.) assessed by LC–MS/MS and HS-SPME/GC–MS. Food Research International. 83: 87-94.

Lau, B. F., Abdullah, N., Aminudin, N., Lee, H. B., Yap, K. C., and Sabaratnam, V. 2014. The Potential of Mycelium and Culture Broth of Lignosus rhinocerotis as Substitutes for the Naturally Occurring Sclerotium with Regard to Antioxidant Capacity, Cytotoxic Effect, and Low-Molecular-Weight Chemical Constituents. PloS one. 9(7): e102509.

Park, S.-E., Ko, W.-K., Park, J. H., Bayome, M., Park, J., Heo, D. N., Lee, S. J., Moon, J.-H., Kwon, I. K., and Kook, Y.-A. 2016. Antibacterial Effect of Silver and Gold Nanoparticle Coated Modified C-Palatal Plate. Journal of Nanoscience and Nanotechnology. 16(8): 8809-8813.

Jayaprakash, N., Vijaya, J. J., Kaviyarasu, K., Kombaiah, K., Kennedy, L. J., Ramalingam, R. J., Munusamy, M. A., and Al-Lohedan, H. A. 2017. Green Synthesis of Ag Nanoparticles Using Tamarind Fruit Extract for the Antibacterial Studies. Journal of Photochemistry and Photobiology B: Biology. 169: 178-185.

Hafsa, J., ali Smach, M., Khedher, M. R. B., Charfeddine, B., Limem, K., Majdoub, H., and Rouatbi, S. 2016. Physical, Antioxidant and Antimicrobial Properties of Chitosan Films Containing Eucalyptus Globulus Essential Oil. LWT-Food Science and Technology. 68: 356-364.

Pfaller, M., Sheehan, D., and Rex, J. 2004. Determination of Fungicidal Activities Against Yeasts and Molds: Lessons Learned from Bactericidal Testing and the Need for Standardization. Clinical Microbiology Reviews. 17(2): 268-280.

Bernardez, L. and Andrade, L. 2015. Improved Method for Enumerating Sulfate-reducing Bacteria Using Optical Density. MethodsX. 2: 249-255.

Hu, B., Zhou, K., Liu, Y., Liu, A., Zhang, Q., Han, G., Liu, S., Yang, Y., Zhu, Y., and Zhu, D. 2018. Optimization of Microwave-assisted Extraction of Oil from Tiger Nut (Cyperus esculentus L.) and its Quality Evaluation. Industrial Crops and Products. 115: 290-297. doi:https://doi.org/10.1016/j.indcrop.2018.02.034.

Quifer, P., Vallverdú-Queralt, A., Martínez-Huélamo, M., Chiva-Blanch, G., Jáuregui, O., Estruch, R., and Lamuela-Raventós, R. 2015. A Comprehensive Characterisation of Beer Polyphenols by High Resolution Mass Spectrometry (LC–ESI-LTQ-Orbitrap-MS). Food Chemistry. 169: 336-343.

Esquivel, P., Stintzing, F. C., and Carle, R. 2007. Phenolic Compound Profiles and Their Corresponding Antioxidant Capacity of Purple Pitaya (Hylocereus sp.) genotypes. Zeitschrift für Naturforschung C. 62(9-10): 636-644.

Kim, H., Choi, H. K., Moon, J. Y., Kim, Y. S., Mosaddik, A., and Cho, S. K. 2011. Comparative Antioxidant and Antiproliferative Activities of Red and White Pitayas and Their Correlation with Flavonoid and Polyphenol Content. Journal of Food Science. 76(1): C38-C45.

Ramli, N. S., Ismail, P., and Rahmat, A. 2014. Influence of Conventional and Ultrasonic-assisted Extraction on Phenolic Contents, Betacyanin Contents, and Antioxidant Capacity of Red Dragon Fruit (Hylocereus polyrhizus). The Scientific World Journal. 2014.

Kim, H., Choi, H. K., Moon, J. Y., Kim, Y. S., Mosaddik, A., and Cho, S. K. 2011. Comparative Antioxidant and Antiproliferative Activities of Red and White Pitayas and Their Correlation with Flavonoid and Polyphenol Content. Journal of Food Science. 76(1).

Fang, X., Wang, J., Hao, J., Li, X., and Guo, N. 2015. Simultaneous Extraction, Identification and Quantification of Phenolic Compounds in Eclipta Prostrata Using Microwave-assisted Extraction Combined with HPLC–DAD–ESI–MS/MS. Food Chemistry. 188: 527-536.

Mertens, L., Van Derlinden, E., and Van Impe, J. F. 2012. A Novel Method for High-throughput Data Collection in Predictive Microbiology: Optical Density Monitoring of Colony Growth as a Function of Time. Food Microbiology. 32(1): 196-201.

Métris, A., George, S., and Baranyi, J. 2006. Use of Optical Density Detection Times to Assess the Effect of Acetic Acid on Single-cell Kinetics. Applied and Environmental Microbiology. 72(10): 6674-6679.

Swinnen, I., Bernaerts, K., Dens, E. J., Geeraerd, A. H., and Van Impe, J. 2004. Predictive Modelling of the Microbial Lag Phase: A Review. International Journal of Food Microbiology. 94(2): 137-159.

Wang, Y. and Buchanan, R. L. 2016. Develop Mechanistic Models of Transition Periods between Lag/Exponential And Exponential/Stationary Phase. Procedia Food Science. 7: 163-167.

Vargas, S., Millán-Chiu, B. E., Arvizu-Medrano, S. M., Loske, A. M., and Rodríguez, R. 2017. Dynamic Light Scattering: A Fast and Reliable Method to Analyze Bacterial Growth During the Lag Phase. Journal of Microbiological Methods. 137: 34-39.

Bayles, K. W. 2014. Bacterial Programmed Cell Death: Making Sense of a Paradox. Nature Reviews Microbiology. 12(1): 63-69.

Monds, R. D. and Toole, G. A. 2009. The Developmental Model of Microbial Biofilms: Ten Years of a Paradigm Up for Review. Trends in Microbiology. 17(2): 73-87.

Peeters, S. H. and Jonge, M. I. 2017. For the Greater Good: Programmed Cell Death in Bacterial Communities. Microbiological Research. 207:161-169

MajheniÄ, L., Å kerget, M., and Knez, Ž. 2007. Antioxidant and Antimicrobial Activity of Guarana Seed Extracts. Food Chemistry. 104(3): 1258-1268.

Guo, N., Ling, G., Liang, X., Jin, J., Fan, J., Qiu, J., Song, Y., Huang, N., Wu, X., and Wang, X. 2011. In Vitro Synergy of Pseudolaric Acid B and Fluconazole Against Clinical Isolates of Candida Albicans. Mycoses. 54(5).

Mback, M. N., Agnaniet, H., Nguimatsia, F., Dongmo, P.-M. J., Fokou, J.-B. H., Bakarnga-Via, I., Boyom, F. F., and Menut, C. 2016. Optimization of Antifungal Activity of Aeollanthus Heliotropioides Oliv Essential Oil and Time Kill Kinetic Assay. Journal de Mycologie Médicale/Journal of Medical Mycology. 26(3): 233-243.

Flórez, N., Conde, E., and Domínguez, H. 2015. Microwave Assisted Water Extraction of Plant Compounds. Journal of Chemical Technology and Biotechnology. 90(4): 590-607.

Bail, S., Stuebiger, G., Krist, S., Unterweger, H., and Buchbauer, G. 2008. Characterisation of Various Grape Seed Oils by Volatile Compounds, Triacylglycerol Composition, Total Phenols and Antioxidant Capacity. Food Chemistry. 108(3): 1122-1132. doi:https://doi.org/10.1016/j.foodchem.2007.11.063.

Desai, M., Parikh, J., and Parikh, P. 2010. Extraction of Natural Products Using Microwaves as a Heat Source. Separation & Purification Reviews. 39(1-2): 1-32.

Virot, M., Tomao, V., Ginies, C., Visinoni, F., and Chemat, F. 2008. Microwave-integrated Extraction of Total Fats and Oils. Journal of Chromatography A. 1196: 57-64.

Farhat, A., Fabiano-Tixier, A.-S., Maataoui, M. E., Maingonnat, J.-F., Romdhane, M., and Chemat, F. 2011. Microwave Steam Diffusion for Extraction of Essential Oil from Orange Peel: Kinetic Data, Extract’s Global Yield and Mechanism. Food Chemistry. 125(1): 255-261. doi:https://doi.org/10.1016/j.foodchem.2010.07.110.

Yanık, D. K. 2017. Alternative to Traditional Olive Pomace Oil Extraction Systems: Microwave-Assisted Solvent Extraction of Oil From Wet Olive Pomace. LWT-Food Science and Technology. 77: 45-51.

Downloads

Published

2019-01-22

Issue

Section

Science and Engineering

How to Cite

ASSESSMENT ON BIOACTIVE COMPOUNDS AND THE EFFECT OF MICROWAVE ON PITAYA PEEL. (2019). Jurnal Teknologi, 81(2). https://doi.org/10.11113/jt.v81.12847