POLYMERIC MIXED MATRIX MEMBRANES INCORPORATED WITH GRAPHENE OXIDE FOR H2/CO2 SEPARATION

Authors

  • Rosiah Rohani Chemical Engineering Program & Research Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Hannaneh Milani Kalkhoran Chemical Engineering Program & Research Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Ying Tao Chung Chemical Engineering Program & Research Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia Department of Chemical and Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University (Block E) Kuala Lumpur Campus Jalan Mandarina Damai 1, 56000 Cheras, Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.11113/jt.v81.12895

Keywords:

POME, biohydrogen, MMMs, graphene oxide, gas separation

Abstract

Biohydrogen is a potential alternative for fossil fuels and it can be produced from POME fermentation. Membrane technology has been a prominent separation approach for H2 purification. However, membranes yield weakness in tradeoff between permeability and selectivity. The main objective of this project is to develop mixed matrix membrane with different polymeric bases of Polysulfone (PSF) and Polyimide (PI) with graphene oxide (GO) incorporation as inorganic filler for H2/CO2 separation. Gas permeability and selectivity results indicated that PI/GO membrane with 1 wt% of GO has the highest H2 and CO2 permeability at 501 GPU and 595 GPU at 1 bar, respectively, H2/CO2 selectivity of 1.01 at 5 bar and highest H2 purity of 83 %. FESEM analysis indicated changes in the pore size and top layer of membranes due to the presence of GO. Zeta potential analysis proved that PI/GO 1wt% membranes is highly negative-charged (-56 mV). Contact angle results showed a decrease in contact angle value with the addition of GO. It can be concluded that PI/GO 1 wt% membranes demonstrated better results in the aspects of permselectivity and physicochemical properties compared to PSF membranes.

Author Biography

  • Hannaneh Milani Kalkhoran, Chemical Engineering Program & Research Centre for Sustainable Process Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
    Faculty of Engineering and Built Environment

References

Mulder, J. 2012. Basic Principles of Membrane Technology. Springer Science & Business Media. DOI: 10.1007/978-94-009-1766-8.

Panapitiya, N., Wijenayake, S., Nguyen, D., Karunaweera, C., Huang, Y., Balkus, K., and Ferraris, J. 2016. Compatibilized Immiscible Polymer Blends for Gas Separations. Materials. 9(8): 643. DOI: 10.3390/ma9080643.

Joshi, R. K., Alwarappan, S., Yoshimura, M., Sahajwalla, V., and Nishina, Y. 2015. Graphene Oxide: The New Membrane Material. Applied Materials Today. 1(1): 1-12.

DOI: https://doi.org/10.1016/j.apmt.2015.06.002.

Mohamad, I. N., Rohani, R., Mastar, M. S., Nor, M. T. M., and Jahim, J. M. 2016. Permeation Properties of Polymeric Membranes for Biohydrogen Purification. International Journal of Hydrogen Energy. 41(7): 4474-4488.

DOI: https://doi.org/10.1016/j.ijhydene.2015.08.002.

Yoon, H. W., Cho, Y. H., and Park, H. B. 2016. Graphene-Based Membranes: Status and Prospects. Philosophical Transactions of the Royal Society A. 374(2060): 20150024. DOI: 10.1098/rsta.2015.0024.

Huang, H. L., and Yang, S. 2006. Filtration Characteristics of Polysulfone Membrane Filters. Journal of Aerosol Science. 37(10): 1198-1208.

DOI: https://doi.org/10.1016/j.jaerosci.2005.11.010.

Jiang, Z., Zhao, X., Fu, Y., and Manthiram, A. 2012. Composite Membranes based on Sulfonated Poly (ether ether ketone) and SDBS-adsorbed Graphene Oxide for Direct Methanol Fuel Cells. Journal of Materials Chemistry. 22(47): 24862-24869. DOI: 10.1039/C2JM35571J.

Guzmán-Lucero, D., Palomeque-Santiago, J. F., Camacho-Zúñiga, C., Ruiz-Treviño, F. A., Guzmán, J., Galicia-Aguilar, A., and Aguilar-Lugo, C. 2015. Gas Permeation Properties of Soluble Aromatic Polyimides Based on 4-Fluoro-4, 4'-Diaminotriphenylmethane. Materials. 8(4): 1951-1965.

DOI: https://doi.org/10.3390/ma8041951.

Rafiq, S., Man, Z., Maitra, S., Maulud, A., Ahmad, F., and Muhammad, N. 2011. Preparation of Asymmetric Polysulfone/Polyimide Blended Membranes for CO 2 Separation. Korean Journal of Chemical Engineering. 28(10), 2050-2056. DOI: 10.1007/s11814-011-0053-1.

Park, H. B., Yoon, H. W., and Cho, Y. H. 2016. Graphene Oxide Membrane for Molecular Separation. Graphene Oxide: Fundamentals and Applications. 296.

DOI: https://doi.org/10.1002/9781119069447.ch9.

Mahmoudi, E., Ng, L. Y., Ba-Abbad, M. M., & Mohammad, A. W. 2015. Novel Nanohybrid Polysulfone Membrane Embedded with Silver Nanoparticles on Graphene Oxide Nanoplates. Chemical Engineering Journal. 277: 1-10.

DOI: https://doi.org/10.1016/j.cej.2015.04.107

Momeni, S. M., and Pakizeh, M. 2013. Preparation, Characterization and Gas Permeation Study of PSf/MgO Nanocomposite Membrane. Brazilian Journal of Chemical Engineering. 30(3): 589-597.

DOI: http://dx.doi.org/10.1590/S0104-66322013000300016.

Kertész, S., de Freitas, T. B., and Hodúr, C. 2014. Characterization of Polymer Membranes by Contact Angle Goniometer. Analecta Technica Szegedinensia. 8(2): 18-22.

DOI: https://doi.org/10.14232/analecta.2014.2.18-22.

Breite, D., Went, M., Prager, A., and Schulze, A. 2015. Tailoring Membrane Surface Charges: A Novel Study on Electrostatic Interactions during Membrane Fouling. Polymers. 7(10): 2017-2030.

DOI: https://doi.org/10.3390/polym7101497.

Mataram, A., Nasution, S., Wijaya, M. L., and Septano, G. 2017. Physical and Mechanical Properties of Membrane Polyacrylonitrile. MATEC Web of Conferences. EDP Sciences. 101: 01010.

DOI: ttps://doi.org/10.1051/matecconf/201710101010.

Tylkowski, B., and Tsibranska, I. 2015. Overview of Main Techniques Used for Membrane Characterization. Journal of Chemical Technology & Metallurgy. 50(1): 3-12

Mohamad, I. N., Rohani, R., Mastar, M. S., Nor, M. T. M., & Jahim, J. M. 2016. Permeation Properties of Polymeric Membranes for Biohydrogen Purification. International Journal of Hydrogen Energy. 41(7): 4474-4488.

DOI: https://doi.org/10.1016/j.ijhydene.2015.08.002.

Zhao, C., Xu, X., Chen, J., and Yang, F. 2013. Effect of Graphene Oxide Concentration on the Morphologies and Antifouling Properties of PVDF Ultrafiltration Membranes. Journal of Environmental Chemical Engineering. 1(3): 349-354. DOI: https://doi.org/10.1016/j.jece.2013.05.014.

Zahri, K., Goh, P. S., and Ismail, A. F. 2016. The Incorporation of Graphene Oxide into Polysulfone Mixed Matrix Membrane for CO2/CH4 Separation. IOP Conference Series: Earth and Environmental Science. 36(1): 012007. IOP Publishing.

DOI: https://doi.org/10.1088/1755-1315/36/1/012007.

Rezaee, R., Nasseri, S., Mahvi, A. H., Nabizadeh, R., Mousavi, S. A., Rashidi, A., and Nazmara, S. 2015. Fabrication and Characterization of a Polysulfone-graphene Oxide Nanocomposite Membrane for Arsenate Rejection from Water. Journal of Environmental Health Science and Engineering. 13(1): 61. DOI: 10.1186/s40201-015-0217-8.

Rafiq, S., Man, Z., Maitra, S., Muhammad, N., and Ahmad. 2012. Kinetics of Thermal Degradation of Polysulfone/polyimide Blended Polymeric Membranes. Journal of Applied Polymer Science. 123(6): 3755-3763.

DOI: https://doi.org/10.1002/app.34862.

Ge, B. S., Wang, T., Sun, H. X., Gao, W., and Zhao, H. R. 2018. Preparation of Mixed Matrix Membranes based on Polyimide and Aminated Graphene Oxide for CO2 Separation. Polymers for Advanced Technologies. 4(29): 1334-1343. DOI: https://doi.org/10.1002/pat.4245.

Feng, B., Xu, K., and Huang, A. 2017. Synthesis of Graphene Oxide/Polyimide Mixed Matrix Membranes for Desalination. RSC Advances. 7(4): 2211-2217.

DOI: 10.1039/C6RA24974D.

Ding, Z., Liu, X., Liu, Y., and Zhang, L. 2016. Enhancing the Compatibility, Hydrophilicity and Mechanical Properties of Polysulfone Ultrafiltration Membranes with Lignocellulose Nanofibrils. Polymers. 8(10): 349. DOI: https://doi.org/10.3390/polym8100349.

Hurwitz, G., Guillen, G. R., and Hoek, E. M. 2010. Probing Polyamide Membrane Surface Charge, Zeta Potential, Wettability, and Hydrophilicity with Contact Angle Measurements. Journal of Membrane Science. 349(1-2): 349-357. DOI: 0.1016/j.memsci.2009.11.063.

Zhao, L., Cheng, C., Chen, Y. F., Wang, T., Du, C. H., and Wu, L. G. 2015. Enhancement on the Permeation Performance of Polyimide Mixed Matrix Membranes by Incorporation of Graphene Oxide with Different Oxidation Degrees. Polymers for Advanced Technologies. 26(4): 330-337. DOI: https://doi.org/10.1002/pat.3456.

Williams, P. M. 2016. Membrane Charge (Zeta Potential) Effect. Encyclopedia of Membranes. 1-2.

DOI: https://doi.org/10.1007/978-3-642-40872-4_1003-1.

Lu, G. W., and Gao, P. 2010. Emulsions and Microemulsions for Topical and Transdermal Drug Delivery. Handbook of Non-Invasive Drug Delivery Systems. 59-94.

DOI: https://doi.org/10.1016/B978-0-8155-2025-2.10003-4.

Manawi, Y., Kochkodan, V., Mahmoudi, E., Johnson, D. J., Mohammad, A. W., and Atieh, M. A. 2017. Characterization and Separation Performance of a Novel Polyethersulfone Membrane Blended with Acacia Gum. Scientific Reports. 7(1): 15831. DOI: 10.1038/s41598-017-14735-9.

Ismail, N. M., Jakariah, N. R., Bolong, N., Anissuzaman, S. M., Nordin, N. A. H. M., and Razali, A. R. 2017. Effect of Polymer Concentration on the Morphology and Mechanical Properties of Asymmetric Polysulfone (PSf) Membrane. Journal of Applied Membrane Science & Technology. 21(1).

DOI: https://doi.org/10.11113/amst.v21i1.107.

Ammar, A., Al-Enizi, A. M., AlMaadeed, M. A., and Karim, A. 2016. Influence of Graphene Oxide on Mechanical, Morphological, Barrier, and Electrical Properties of Polymer Membranes. Arabian Journal of Chemistry. 9(2): 274-286.

DOI: https://doi.org/10.1016/j.arabjc.2015.07.006.

Paulchamy, B., Arthi, G., and Lignesh, B. D. 2015. A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial. Journal of Nanomedicine & Nanotechnology. 6(1): 1. DOI: 10.4172/2157-7439.1000253.

Zahri, K., Wong, K. C., Goh, P. S., and Ismail, A. F. 2016. Graphene Oxide/polysulfone Hollow Fiber Mixed Matrix Membranes for Gas Separation. RSC Advances. 6(92): 89130-89139. DOI: 10.1039/C6RA16820E.

Park, M. J., Phuntsho, S., He, T., Nisola, G. M., Tijing, L. D., Li, X. M., and Shon, H. K. 2015. Graphene Oxide Incorporated Polysulfone Substrate for the Fabrication of Flat-Sheet Thin-Film Composite Forward Osmosis Membranes. Journal of Membrane Science. 493: 496-507. DOI: 10.1016/j.memsci.2015.06.053.

Kapantaidakis, G. C., Kaldis, S. P., Dabou, X. S., and Sakellaropoulos, G. P. 1996. Gas Permeation through PSF-PI Miscible Blend Membranes. Journal of Membrane Science. 110(2): 239-247.

DOI: https://doi.org/10.1016/0376-7388(95)00265-0.

Volkov, A. 2015. Membrane Compaction. Encyclopedia of Membranes. E. Drioli and L. Giorno, Editors. Springer Berlin Heidelberg: Berlin, Heidelberg. 1-2.

DOI: https://doi.org/10.1007/978-3-642-40872-4_1404-2.

Wessling, M., Schoeman, S., Van der Boomgaard, T., and Smolders, C. A. 1991. Plasticization of Gas Separation Membranes. Gas Separation & Purification. 5(4): 222-228.

DOI: 10.1016/0950-4214(91)80028-4.

Shamsabadi, A. A., Kargari, A., and Babaheidari, M. B. 2014. Preparation, Characterization and Gas Permeation Properties of PDMS/PEI Composite Asymmetric Membrane for Effective Separation of Hydrogen from H2/CH4 Mixed Gas. International Journal of Hydrogen Energy. 39(3): 1410-1419.

DOI: https://doi.org/10.1016/j.ijhydene.2013.11.004.

Shen, J., Zhang, M., Liu, G., Guan, K., and Jin, W. 2016. Size Effects of Graphene Oxide on Mixed Matrix Membranes for CO2 Separation. AIChE Journal. 62(8): 2843-2852.

DOI: https://doi.org/10.1002/aic.15260.

Li, H., Song, Z., Zhang, X., Huang, Y., Li, S., Mao, Y., and Yu, M. 2013. Ultrathin, Molecular-sieving Graphene Oxide Membranes for Selective Hydrogen Separation. Science. 342(6154), 95-98. DOI: 10.1126/science.1236686.

Li, X., Cheng, Y., Zhang, H., Wang, S., Jiang, Z., Guo, R., & Wu, H. 2015. Efficient CO2 Capture by Functionalized Graphene Oxide Nanosheets as Fillers to Fabricate Multi-Permselective Mixed Matrix Membranes. ACS Applied Materials & Interfaces. 7(9), 5528-5537. DOI: 10.1021/acsami.5b00106.

Downloads

Published

2019-04-01

Issue

Section

Science and Engineering

How to Cite

POLYMERIC MIXED MATRIX MEMBRANES INCORPORATED WITH GRAPHENE OXIDE FOR H2/CO2 SEPARATION. (2019). Jurnal Teknologi, 81(3). https://doi.org/10.11113/jt.v81.12895