FINITE ELEMENT ANALYSIS OF T-SECTION RC BEAMS STRENGTHENED BY WIRE ROPE IN THE NEGATIVE MOMENT REGION WITH AN ADDITION OF STEEL REBAR AT THE COMPRESSION BLOCK

Authors

  • Yanuar Haryanto Department of Civil Engineering, Faculty of Engineering, Jenderal Soedirman University, Purwokerto, Indonesia Department of Civil Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
  • Hsuan-Teh Hu Department of Civil Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
  • Han Ay Lie Department of Civil Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
  • Anggun Tri Atmajayanti Department of Civil Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan Department of Civil Engineering, Faculty of Engineering, Atma Jaya Yogyakarta University, Yogyakarta, Indonesia
  • Dimas Langga Chandra Galuh Department of Civil Engineering, Faculty of Engineering, Sarjanawiyata Tamansiswa University, Yogyakarta, Indonesia
  • Banu Ardi Hidayat Department of Civil Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan

DOI:

https://doi.org/10.11113/jt.v81.12974

Keywords:

Finite element analysis, ATENA, reinforced concrete beam, strengthening, wire rope

Abstract

A building whose functions are converted in which their volumes are improved, for example, a four-story building transformed into a five-story building, resulting in a dead load improvement of its structural self-weight, obviously requires strengthening in order to avoid the possibility of structural failures. This paper focuses on a nonlinear finite element analysis conducted using the ATENA program on T-section reinforced concrete beams strengthened in the negative moment region with wire ropes and an addition of steel rebars at the compression block. The results are then compared with the results of the previously conducted experiments. The specimen models consist of control beams (BK), strengthened beams with wire ropes at the tension block (BP1), and strengthened beams with wire ropes at the tension block and steel rebars at the compression block (BP2). The results show that the ratios of the load-carrying capacity against those of the experimental results are 1.25, 1.23, and 0.89 respectively for BK, BP1 and BP2. The effective stiffness ratios to those of the experimental results are 1.45, 1.15, and 1.86, while the ductility index ratios against the experimental results are 1.11, 0.63, and 1.01 respectively for BK, BP1, and BP2. The crack patterns of the nonlinear finite element analytical results revealed that all specimen models experience flexural failure.

References

Park, T. W. 2012. Inspection of Collapse Cause of Sampoong Department Store. Forensic Science International. 217(1-3): 119-126.

Haryanto, Y., Sudibyo, G. H. and Effendi, F. C. A. 2017. Preliminary Seismic Hazard Assessment of the Oral and Dental Hospital of Jenderal Soedirman University Indonesia. Procedia Engineering. 171: 1025-1034.

Haryanto, Y., Gan, B. S., Wariyatno, N. G., and Indriyati, E. W. 2017. The Performance of a Ten-story Irregular Apartment Building Model under Seismic Load in Purbalingga Regency Indonesia. ARPN Journal of Engineering and Applied Sciences. 12(17): 4858-4866.

Haryanto, Y., Gan, B. S., Wariyatno, N. G., and Indriyati, E. W. 2018. Seismic Performance of a High-rise Residential Building Model in Purwokerto, Indonesia. MATEC Web of Conferences. 192: 02002.

Widyaningrum, A., Haryanto, Y., and Hermanto, N. I. S. 2018. A Structural Performance Evaluation of Vertical Housing Model Due to the Increased Seismic Loads in Semarang, Indonesia Using a Pushover Analysis. MATEC Web of Conferences. 195: 02018.

Raoof, M. and Davies, T. J. 2003. Simple Determination of the Axial Stiffness for Large Diameter Independent Wire Rope Core or Fibre. The Journal of Strain Analysis for Engineering Design. 38(6): 577-586.

Avak, R. and Willie, F. 2005. Experimental Investigations and Modeling of Bond between Round Strand Ropes and Concrete. The 11th International Conference on Fracture (ICF). Turin, Italy.

Kim, S. Y., Yang, K. H., Byun, H. Y. and Ashour, A. F. 2007. Tests of Reinforced Concrete Beams Strengthened with Wire Rope Units. Engineering Structures. 29: 2711-2722.

Yang, K. H., Byun, H. Y. and Ashour, A. F. 2009. Shear Strengthening of Continuous Reinforced Concrete T-Beams Using Wire Rope Units. Engineering Structures. 31: 1154-1165.

Haryanto, Y. 2011. Efektifitas Wire Rope Sebagai Perkuatan Pada Daerah Momen Negatif Balok Beton Bertulang Tampang T. Dinamika Rekayasa. 7(2): 36-42.

Atmajayanti, A. T., Satyarno, I. and Saputra, A. 2013. Pengaruh Penggunaan Wire Rope sebagai Perkuatan Lentur Terhadap Kekuatan dan Daktilitas Balok Beton Bertulang Tampang T. Konferensi Nasional Teknik Sipil 7, Surakarta, Indonesia.

Haryanto, Y., Wariyatno, N. G. and Sudibyo, G H. 2013. Pengaruh Gaya Prategang Awal Terhadap Efektifitas Wire Rope sebagai Perkuatan Daerah Momen Negatif Balok Beton Bertulang Tampang T. Seminar Nasional Teknik Sipil IX. Surabaya, Indonesia.

Galuh, D. L. C. 2015. The Effectiveness of the Use of Wire Rope Flexural as the Negative Moment Reinforcement in T-Sectional Reinforced Concrete Beam. International Conference on Quality in Research, Lombok, Indonesia.

Galuh, D. L. C. 2018. Comparative Analysis Layes Method of T-Beam Reinforcement. IOP Conf. Series: Materials Science and Engineering. 316: 012043.

Yanuar, Y., Gan, B. S., Widyaningrum, A., Wariyatno, N. G. and Fadli, A. 2018. On the Performance of Steel Wire Rope As the External Strengthening of RC Beams with Different End-Anchor Type. Jurnal Teknologi (Sciences and Engineering). 80(5): 1-10.

Han, A., Gan, B. S. and Pratama, M. M A. 2016. Effects of Graded Concrete on Compressive Strengths. International Journal of Technology. 7(5): 732-740.

Hu, H.-T., Lin, F.-M. and Jan, Y.-Y. 2004. Nonlinear ï¬nite Element Analysis of Reinforced Concrete Beams Strengthened by Fber-reinforced Plastics. Composite Structures. 63: 271-281.

Lesmana, C. and Hu, H.-T. 2015. Nonlinear Finite Element Analysis of Rectangular Reinforced Concrete Slabs Strengthened by Fiber Reinforced Plastics. Scientia Iranica A. 22(3): 615-628.

Cervenka, V., Jendele, L. and Cervenka, J. 2018. ATENA Program Documentation Part 1; Theory. Prague, Czech Republic: Cervenka Consulting.

Pangestuti, E. K. and Effendi, M. K. 2010. Perilaku Lentur Balok-L Beton Bertulang Berlubang Ditinjau Secara Eksperimental dan Analisis Numerik Memakai Software GID-ATENA. Jurnal Teknik Sipil dan Perencanaan. 12(2): 121-130.

Sukarno, P., Muslikh and Sulsityo, D. 2011. Analisis Lentur Balok Penampang T Berlubang Memanjang Menggunakan Metode Elemen Hingga Non-linier. Jurnal Ilmiah Semesta Teknika. 14(1): 1-14.

Setyawan, A. 2012. Non-linier Analisis of Stress and Prestressed Concrete Bridge Structure Deformation within the Construction Phase Using the Balanced Cantilever Method. Jurnal Teknik Sipil Universitas Surakarta. 13(2): 33-39.

Jati, D. G. 2013. Analisis Lentur Pelat Satu Arah Beton Bertulang Berongga Bola Menggunakan Metode Elemen Hingga Non Linier. Konferensi Nasional Teknik Sipil 7, Surakarta, Indonesia.

Haryanto, Y., Gan, B. S. and Maryoto, A. 2017. Wire Rope Flexural Bonded Strengthening System on RC-Beams: A Finite Element Simulation. International Journal of Technology. 8(1): 134-144.

Haryanto, Y., Gan, B. S., Widyaningrum, A. and Maryoto, A. 2017. Near Surface Bamboo Reinforcement for Flexural Strengthening of Reinforced Concrete Beams. Jurnal Teknologi (Sciences and Engineering). 79(6): 233-240.

Jirawattanasomkul, T., Kongwang, N., Jongvivatsakul, P. and Likitlersuang, S. 2018. Finite Element Modelling of flexural Behaviour of Geosynthetic Cementitious Composite Mat (GCCM). Composites Part B. 154: 33-42.

Kupfer, H., Hilsdorf, H. K. and Rüsch, H. 1969. Behavior of Concrete under Biaxial Stress. Journal ACI. 66(8): 656-666.

Hordijk, D. A. 1991. Local Approach to Fatigue of Concrete. Doctor Dissertation, The Netherlands: Delft University of Technology.

Van Mier, J. G. M. 1984. Multi-axial Strain-softening of Concrete, Part I: Fracture. Materials and Structures. 19(3): 179-190.

Lee, W. K. 1991. An Insight into Wire Rope Geometry. International Journal of Solids and Structures. 28(4): 471-490.

Cervenka, V., Cervenka, J., Janda, Z. and Pryl, D. 2017. ATENA Program Documentation Part 8; User’s Manual for ATENA-GiD Interface. Prague, Czech Republic: Cervenka Consulting.

Al Faridi, S. 2010. Analisis Non-linier Elemen Hingga Struktur Balok Beton Prategang Dua Bentangan. Mater Thesis. Yogyakarta, Indonesia: Gadjah Mada University.

Hidayat, A., Purwanto, Puspowadojo, J. and Aziz, F.A. 2015. The Influence of Graded Concrete Strength on Concrete Element. Procedia Engineering. 125: 1023-1029.

Büyükkaragöz, A. 2010. Finite Element Analysis of the Beam Strengthened with Prefabricated Reinforced Concrete Plate. Scientific Research and Essays. 5(6): 533-544.

Downloads

Published

2019-06-25

Issue

Section

Science and Engineering

How to Cite

FINITE ELEMENT ANALYSIS OF T-SECTION RC BEAMS STRENGTHENED BY WIRE ROPE IN THE NEGATIVE MOMENT REGION WITH AN ADDITION OF STEEL REBAR AT THE COMPRESSION BLOCK. (2019). Jurnal Teknologi (Sciences & Engineering), 81(4). https://doi.org/10.11113/jt.v81.12974