α-GLUCOSIDASE INHIBITION OF LACTONE INTERMEDIATES OF THE IMINOSUGAR DEOXYNOJIRIMYCIN
DOI:
https://doi.org/10.11113/jt.v81.13079Keywords:
D-Glucuronolactone (1), 1, 2-O-isopropylidene-α-D-glucurono-3, 6-lactone (2), 2-O-isopropylidene-β-L-idurono-3, 6-lactone (3), 5-azido-5-deoxy-1, 6-lactone (4), iminosugar, deoxynojirimycin, α-glucosidase inhibitionAbstract
α-Glycosidase enzymes hydrolyse α-glycosidic linkages and are involved in bodily processes such as the catabolism of glycans, intestinal digestion, and the degradation of glycoproteins. Various types of diseases which are caused by the failure of this enzyme to function properly can be treated through enzyme inhibition. The hydroxyethyl derivative of DNJ (Miglitol) is a clinical drug for the treatment of type 2 diabetes. Although the iminosugar D-deoxynojirimisin (D-DNJ) is an excellent micromolar glycosidase inhibitor, the α-glucosidase inhibition activity of D-DNJ lactone intermediates has yet to be reported. Therefore, the scalable synthesis of the D-DNJ intermediates 1,2-O-isopropylidene-α-D-glucurono-3,6-lactone (2), 1,2-O-isopropylidene-β-L-idurono-3,6-lactone (3) and 5-azido-5-deoxy-1,2-O-isopropylidene-α-D-glucurono-3,6-lactone (4) was carried out using D-glucuronolactone (1) as the starting material based on the method reported by Best et al. 2010 with some modification and subsequently, evaluated for anti-α-glucosidase activity. All products were characterised and identified by HPLC-ELSD, mass spectrometry (DI-ESI-MS) and NMR spectroscopy (via comparison of 1D 1H and 13C data with previously reported values). The inhibitory activity of compounds 1-4 towards α-glucosidase from Saccharomyces cerevisiae was evaluated using the p-nitrophenyl α-D-glucopyranoside substrate. Compound 3 showed 29.5% inhibition followed by 2 (21.4%), 1 (15.8%) and 4 (15.7%) compared to the positive control, quercetin (72.7%).
References
Best, D. 2010. Rare Monosaccharides and Biologically Active Iminosugars from Carborhydrate Chirons. Thesis of Doctor of Philosophy. University of Oxford, UK.
Nash, R. J., Kato, A., Yu, C. Y. and Fleet, G. J. W. 2011. Iminosugars as Therapeutic Agents: Recent Advances and Promising Trends. Future Medicinal Chemistry. 3(12): 1513-1521. DOI: 10.4155/fmc.11.117.
Ichikawa, Y., Igarashi, Y., Ichikawa, M. and Suhara, Y. 1998. 1- N -Iminosugars: Potent and Selective Inhibitors of β-Glycosidases. Journal of the American Chemical Society. 120(13): 3007-3018. DOI: 10.1021/ja973443k.
Le Merrer, Y., Poitout, L., Depezay, J. C., Dosbaa, I., Geoffroy, S. and Foglietti, M. J. 1997. Synthesis of Azasugars as Potent Inhibitors of Glycosidases. Bioorganic and Medicinal Chemistry. 5(3): 519-533. DOI: https://doi.org/10.1016/S0968-0896(96)00266-0.
Bras, N. F., Cerqueira, N. MFSA, Ramos M. J. and Fernandes, P. A. 2014. Glycosidase Inhibitors: A Patent Review (2008-2013). Expert Opinion Therapeutic Patents. 24(8): 857-874. DOI: 10.1517/13543776.2014.916280.
Lahiri, R., Ansari, A. A. and Vankar, Y. D. 2013. Recent Developments in Design and Synthesis of Bicyclic Azasugars, Carbasugars and Related Molecules as Glycosidase Inhibitors. Chemical Society Reviews. 42(12): 1-17. DOI: 10.1039/c3cs35525j.
Zhang, S. Z., Yu, H. U., Deng, M. J., Ma, Y., Fei, D. Q., Wang, J., Li, Z., Meng, Y. and Xu, J. P. 2017. Comparative Transcriptome Analysis Reveals Significant Metabolic Alterations in Eri-silkworm (Samia cynthia ricini) Haemolymph in Response to 1-Deoxynojirimycin. PLoS ONE. 13(1): 1-14.
DOI: https://doi.org/10.1371/journal.pone.0191080.
Ju, W. T., Kim, H. B., Kim, K. Y., Sung, G. B. and Kim, Y. S. 2015. Screening of 1-Deoxynojirimycin (DNJ) Producing Bacteria Using Mulberry Leaf. International Journal of Industrial Entomology. 31(2): 48-55. DOI: 10.7852/ijie.2015.31.2.48.
Gao, K., Zheng, C., Wang, T., Zhao,H., Wang., J., Wang, Z., Zhai, X., Jia, Z., Chen, J., Zhou. Y. and Wang, W. 2016. 1-Deoxynojirimycin: Occurrence, Extraction, Chemistry, Oral Pharmacokinetics, Biological Activities and In Silico Target Fishing. Molecules. 21(1600): 1-15. DOI: 10.3390/molecules21111600.
Li, Y. G., Ji, D. F., Zhong, S., Lv, Z. Q., Lin, T. B., Chen, S., Hu, G. Y. and Wang, X. 2013. 1-Deoxynojirimycin Inhibits Glucose Absorption and Accelerates Glucose Metabolism in Streptozotocin-Induced Diabetic Mice. Scientific Reports. 3(1377): 1-12. DOI: 10.1038/srep01377.
Inouye, S., Tsuruoka, T., Ito, T. and Niida, T. 1968. Structure and Synthesis of Nojirimycin. Tetrahedron. 24(5): 2125-2144.
DOI: https://doi.org/10.1016/0040-4020(68)88115-3.
Yagi, M., Kouno, T., and Aoyagi, Y. M. H. 1976. The Structure of Moranoline, A Piperidine Alkaloid from Morus species. Nippon Nogei Kagaku Kaishi. 50(11): 571-572.
DOI: https://doi.org/10.1271/nogeikagaku1924.50.11_571.
Watson, A., Fleet, G. W., Asano, N., Molyneux, R. J. and Nash, R. J. 2001. Polyhydroxylated Alkaloids - Natural Occurrence and Therapeutic Applications. Phytochemistry. 56(3): 265-295.
DOI: https://doi.org/10.1016/S0031-9422(00)00451-9.
Behling, J., Farid, P., Medich, J. R., Scaros, M. G., Prunier, M., Weier, R. M. and Khanna, I. 1991. A Short and Practical Synthesis of 1-Deoxynojirimycin. Synthetic Communications. 21(12-13): 1383-1386.
DOI: https://doi.org/10.1080/00397919108021285.
Best, D., Wang, C., Weymouth-Wilson, A. C., Clarkson, R. A., Wilson, F. X., Nash, R. J., Miyauchi, S., Kato, A. and Fleet, G. 2010. Looking Glass Inhibitors: Scalable Syntheses of DNJ, DMDP, and (3R)-3-Hydroxy-L-Bulgecinine from D-Glucuronolactone E and of L-DNJ, L-DMDP, and (3S)-3-Hydroxy-D-Bulgecinine from L-Glucuronolactone. DMDP Inhibits β-Glucosidases and β-Galactosidases whereas L-DMDP is a Potent and Specific Inhibitor of α-Glucosidases. Tetrahedron: Asymmetry. 21(3): 311-319.
DOI: https://doi.org/10.1016/j.tetasy.2010.01.017.
Concia, A. L., Lozano, C., Castillo, J. A., Parella, T., Joglar, J. and Clapes, P. 2009. D-Fructose-6-Phosphate Aldolase in Organic Synthesis: Cascade Chemical-Enzymatic Preparation of Sugar-Related Polyhydroxylated Compounds. Chemistry. 15(15): 3808-3816.
DOI: 10.1002/chem.200802532.
Kiappes, J. L., Hill, M. L., Alonzi, D. S., Miller, J. L., Iwaki, R., Sayce, A. C., Caputo, A. T., Kato, A. and Zitzmann, N. 2018. ToP-DNJ, a Selective Inhibitor of Endoplasmic Reticulum α-Glucosidase II Exhibiting Antiflaviviral Activity. ACS Chemical Biology. 13(1): 60-65.
DOI: 10.1021/acschembio.7b00870.
Kuriyama, C., Kamiyama, O., Ikeda, K., Sanae, F., Kato, A., Adachi, I., Imahori, T., Takahata, H., Okamoto, T. and Asano, N. 2008. In Vitro Inhibition of Glycogen-Degrading Enzymes and Glycosidases by Six-Membered Sugar Mimics and Their Evaluation in Cell Cultures. Bioorganic and Medicinal Chemistry. 16(15): 7330-7336.
DOI: 10.1016/j.bmc.2008.06.026
Ryu, H. W., Cho, J. K., Marcus, J. C. L., Yuk. H. J., Kim, Y. S., Jung, S., Lee, B. W. and Park, K.H. 2011. α-Glucosidase Inhibition and Antihyperglycemic Activity of Prenylated Xanthones from Garcinia mangostana. Phytochemistry. 72: 2148-2154.
DOI: 10.1016/j.phytochem.2011.08.007.
Simone, M. I., Soengas, R. G., Jenkinson, S. F., Evinson, E. L., Nash, R. J. and Fleet, G.W.J. 2012. Synthesis of Three Branched Iminosugars [(3R,4R,5S)-3-(Hydroxymethyl)Piperidine-3,4,5-Triol, (3R,4R,5R)-3-(Hydroxymethyl)Piperidine-3,4,5-Triol And (3S,4R,5R)-3-(Hydroxymethyl)Piperidine-3,4,5-Triol] and a Branched Trihydroxynipecotic Acid [(3R,4R,5R)-3,4,5-Trihydroxypiperidine-3-Carboxylic Acid] from Sugar Lactones with a Carbon Substituent At C-2. Tetrahedron: Asymmetry. 23(5): 401-408.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.