ANALYSIS OF PARTICLE DISTRIBUTION IN A DOUBLE LAYER BEAM SHAPING ASSEMBLY RESULTED FROM 30 MEV-PROTON REACTIONS WITH BERYLLIUM TARGET USING THE PHITS PROGRAM

Authors

  • Bilalodin Bilalodin Department of Physics, Faculty of Mathematics and Natural Science, Gajah Mada University, Indonesia Department of Physics, Faculty of Mathematics and Natural Science, Jenderal Soedirman University, Indonesia
  • Gede Bayu Suparta Department of Physics, Faculty of Mathematics and Natural Science, Gajah Mada University, Indonesia
  • Arief Hermanto Department of Physics, Faculty of Mathematics and Natural Science, Gajah Mada University, Indonesia
  • Dwi Satya Palupi Department of Physics, Faculty of Mathematics and Natural Science, Gajah Mada University, Indonesia
  • Yohannes Sardjono Centre for Accelerator Science and Technology, National Nuclear Energy Agency, Indonesia
  • Rasito Rasito Center for Applied Nuclear Science and Nuclear Agency, Bandung, Indonesia

DOI:

https://doi.org/10.11113/jt.v82.13162

Keywords:

Particle distribution, 9Be(p, n)9Be reaction, double layer BSA, spectrum of neutron beam, PHITS program

Abstract

An analysis on the distribution of particle flux emanating from reactions of 30 MeV-proton with beryllium target in a double layer beam shaping assembly (BSA) has been carried out using the PHITS program.  It studies important parameters relating to the distribution of proton, neutron, and gamma. It is revealed that reactions of proton and beryllium in double layer BSA produce fast neutrons and other protons, resulting from certain reactions, and recoil protons from the interactions of fast neutrons and hydrogen atoms. Fast neutrons are distributed around beryllium target, moderator, reflector, and collimator. They are moderated by Al and LiF material. Epithermal neutrons spread along the moderator, with a distribution that is tapering down as it approaches the end of the collimator (aperture). During its travel along the moderator, an epithermal neutron decreases in energy to become a thermal neutron. The spectrum of neutron beam produced by the double layer BSA is wide, which indicates that the neutron beam exiting the aperture consists of three kinds of neutrons, dominated by epithermal neutronswith energy range 1 eV – 10 keV.  

References

Sauerwein, W. A. G. 2012. Neutron Capture Therapy. New York: Springer.

Hashimoto, Y., Hiraga, F., Kiyanagi, Y. 2014. Effects of Proton Energy on Optimal Moderator System and Neutron-induced Radioactivity of Compact Accelerator-driven 9Be(p,n) Neutron Sources for BNCT. Physics Procedia. 60: 332-340.

Doi: https://doi.org/10.1016/j.phpro.2014.11.045.

Tanaka, H., Sakurai, Y., Suzuki, M., Masunaga, S., Matsumoto, T., Fujita, K., Kashino, G., Kinashi, Y., Liu, Y., Takada, M., Ono, K., dan Marushasi. 2011. Experimental Verification of Beam Characteristics for Cyclotron-based Epithermal Neutron Source (C-BENS). Applied Radiation and Isotopes. 69 (12): 1642-1645.

Doi: 10.1016/j.apradiso.2011.03.020.

Monshizadeh, M., Kasesaz, Y., Khalafi, H. S., Hamidi. 2015. MCNP Design of Thermal and Epithermal Neutron Beam for BNCT at the Isfahan MNSR. Progress in Nuclear Energy. 83: 427-432.

Doi: https://doi.org/10.1016/j.pnucene.2015.05.004.

Kasesaz, Y., Khalafi, H., Rahmani, F. 2013. Optimization of the Beam Shaping Assembly in the D–D Neutron Generators-based BNCT using the Response Matrix Method. Applied Radiation and Isotopes. 82: 55-59

Doi: https://doi.org/10.1016/j.apradiso.2013.07.008.

Dao-wen, C., Jing-bin, L., Dong, Y., Hui-dong, W., Ke-yan, M. 2012. Improvement of the Moderator’s Thermalization Efficiency for 14 MeV Neutrons in Boron Neutron Capture Therapy. Journal of Radioanalytical and Nuclear Chemistry. 292(3): 1085-1088.

Doi: 10.1007/s10967-011-1575-z.

Adib, M., Habib, N., Bashter, I. I., El-mesiry, M. S., & Mansy, M. S. 2016. Simulation Study of Accelerator Based Quasi-mono-energetic Epithermal Neutron Beams for BNCT. Applied Radiation and Isotopes. 107: 98-102.

Doi: https://doi.org/10.1016/j.apradiso.2015.10.003.

Asnal, M., Liamsuwan, T., Onjun, T. 2015. An Evaluation on the Design of Beam Shaping Assembly Based on the D-T reaction for BNCT. Journal of Physics: Conference Series. 611: 1-7.

Doi: 10.1088/1742-6596/611/1/012031.

Sato, T., Niita, K., Matsuda, N., Hashimoto, Iwamoto, Y., Noda, S., ... & Okumura, K. 2013. Particle and Heavy Ion Transport code System, PHITS, version 2.52. Journal of Nuclear Science and Technology. 50(9): 913-923.

Doi: https://doi.org/10.1080/00223131.2013.814553.

Sato, T., Niita, K., Matsuda, N., Hashimoto, S., Iwamoto, Y., Furuta, T., ... & Fukahori, T. 2015. Overview of Particle and Heavy Ion Transport Code System PHITS. Annals of Nuclear Energy. 82: 110-115.

Doi: https://doi.org/10.1016/j.anucene.2014.08.023.

Bilalodin, Kusminarto, Hermanto, A., Sardjono,Y. 2017. Double Layer Collimator for BNCT Neutron Source Based on 30 MeV Cyclotron. Indonesian Journal of Physic and Nuclear Application. 3(2): 124-127.

Doi: https://doi.org/10.24246/ijpna.v2i3.124-127.

Mitsumoto, T., Fujita, K., Ogasawara, T., Tsutsui, H., Yajima, S., Maruhashi, A., ... & Tanaka, H. 2010. BNCT System using 30 MeV HM-30 Cyclotron. Proceeding of Cyclotron. 6-8.

Sunardi and Silakhuddin. 2015. Estimation of Exposure Quantity of Gamma and Neutron in 13 MeV Proton Cyclotron for Radio Isotope Production of 18F. Proceedings of the Meeting and Scientific Presentation of Accelerator Technology and its Applications. 17: 27-32.

www.iaea.org/inis/collection/NCLCollectionStore/_Public/47/082/47082696.pdf.

Avagyan, R., Avetisyan, R., Ivanyan, V., Kerobyan, I. 2017. Geant4 Simulations of a Beam Shaping Assembly Design and Optimization for Thermal/epithermal Neutrons. Acta Physica PolonicaB. 48(10): 1693-1699.

Doi: 10.5506/APhysPolB.48.1693.

Salehi, D., Sardari, D., Salehi, M. 2012. Evaluation of Design Neutron Filters in BNCT. Science and Research Branch. Islamic Azad University Tehran, Iran, Open Access Open Access Scientific report. 1(11): 2-6.

Doi: http:/dx.doi.org/10.4172/scientificreport.537.

Sato, A., Takizawaa, Y., Hiragaa, F., Kiyanagia, Y. 2014. Neutron Slowing Down Efficiency Depending on the Proton Energy for Accelerator based BNCT. Physics Procedia. 60: 15-22.

Doi: https:/ doi: 10.1016/j.phpro.2014.11.004.

Stefanik, M., Bem, P., Majerle, M., Novak, J., Simeckova, E., & Stursa, J. 2019, Neutron Field Study of p (35)+ Be Source Reaction at the NPI Rez. Radiation Physics and Chemistry. 155: 294-298.

Takata, T., Tanaka, H., Sakurai, Y., & Maruhashi, A. 2010. Increase in Irradiation Beam Intensity by Using a Hybrid Target System in Cyclotron-based Neutron Capture Therapy. Journal of Nuclear Science and Technology. 47(7): 575-581.

Doi: http:/dx.doi.org/10.1080/18811248.20109720954.

Takata, T., Tanaka, H., Sakurai, Y., & Maruhashi, A. 2010. Increase in Irradiation Beam Intensity by Using a Hybrid Target System in Cyclotron-based Neutron Capture Therapy. Journal of Nuclear Science and Technology. 47(7): 575-581.

Doi: http:/dx.doi.org/10.1080/18811248.20109720954.

Osawa, Y., Imoto, S., Kusaka, S., Sato, F., Tanoshita, M., & Murata, I. 2017. Development of an Epi-thermal Neutron Field for Fundamental Researches for BNCT with a D-T Neutron Source. EPJ Web of Conferences. 153: 1-9.

Doi: https://doi.org/10.1051/epjconf/201715304008.

Ma, W. C., Zhang, Q. G., Wang, W. H., Zuo, J. X. 2015. Neutron-induced Reactions on AlF3 Studied using the Optical Model. Nuclear Instruments and Methods in Physics Research B. 356-357: 42-45.

Doi: https://doi.org/10.1016/j.nimb.2015.04.060.

Ivakhin, V. S., Tikhomirov, V. G., Bolozdynya, I. A., Akimov, A. G., Stekhanov, V. N. 2011. Modeling of Filters for Formation of Mono-energetic Neutron Beams in the Research Reactor IRT MEPhI. Proceedings of GLOBAL. Makuhari, Japan. Paper No. 392341.

Subramanian, D. V., Haridas, A., Kumar, D. S., Arul, A. J., & Puthiyavinayagam, P. 2018. Neutron Attenuation Studies with Borated Polyethylene Slabs Containing 30% Natural Boron and Its Comparison with Hydrogenous Materials. Indian Journal of Pure & Applied Physics. 56: 583-586.

Doi: http://nopr.niscair.res.in/handle/123456789/44863.

Hu, G., Hu, H. S., Wang, S., Pan, Z, H., Jia, Q. G., Yan, M. F. 2016. The “Neutron Channel Designâ€-A Method for Gaining the Desired Neutrons. AIP Advances. 6: 1-12.

Doi: https://doi.org/10.1063/1.4972203.

Asnal, M., Liamsuwan, T., Onjun, T. 2015. An Evaluation on the Design of Beam Shaping Assembly Based on the D-T reaction for BNCT. Journal of Physics: Conference Series. 611: 1-7.

Doi: 10.1088/1742-6596/611/1/012031.

Faghihi, F., & Khalili, S. 2013. Beam Shaping Assembly of a D–T Neutron Source for BNCT and Its Dosimetry Simulation in Deeply-seated Tumor. Radiation Physics and Chemistry. 89: 1-13.

Doi: https://doi.org/10.1016/j.radphyschem.2013.02.003.

Downloads

Published

2020-04-11

Issue

Section

Science and Engineering

How to Cite

ANALYSIS OF PARTICLE DISTRIBUTION IN A DOUBLE LAYER BEAM SHAPING ASSEMBLY RESULTED FROM 30 MEV-PROTON REACTIONS WITH BERYLLIUM TARGET USING THE PHITS PROGRAM. (2020). Jurnal Teknologi, 82(3). https://doi.org/10.11113/jt.v82.13162