INFLUENCE OF ELEVATED CO2 ON THE GROWTH AND PHENOLIC CONSTITUENTS PRODUCTION IN HIBISCUS SABDARIFFA VAR. UKMR-2

Authors

  • Siti Aishah Mohd Ali Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Che Radziah Che Mohd Zain School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Jalifah Latip Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v81.13241

Keywords:

Phenolic constituents, H. sabdariffa var. UKMR-2, elevated [CO2], antioxidant activity, HPLC-PDA

Abstract

The impact of global climate change on plants which has been widely reported can exhibit significant changes on the growth, yield and metabolite production. Studies on the impact of elevated carbon dioxide concentration, [CO2] on plant growth and production of phenolic constituents in Hibiscus sabdariffa var. UKMR-2 has not been reported in any previous studies. This study investigated the growth quality and production of phenolic constituents of UKMR-2 under different [CO2]. The cultivation was subjected to two atmospheric [CO2]; ambient (400 µmol/mol), and elevated (800 µmol/mol). Selected parameters for growth performance were recorded throughout the plant development. UKMR-2 calyx extract was analysed for total phenolic, total anthocyanins, antioxidant activity, and evaluated based on HPLC-PDA method. The results revealed that UKMR-2 responded differently to the [CO2] treatments. The results clearly showed that exposure to elevated [CO2] increased calyx yields, production of phenolic constituents, and antioxidant activity. Furthermore, different [CO2] had significant interaction on the production of phenolic constituents, and antioxidant activity (p < 0.05), except for plant growth. The HPLC-PDA showed the presence of delphinidin-3-O-sambubioside, cyanidin-3-O-sambubioside, ascorbic acid, caffeic acid, and chlorogenic acid. Therefore, increased [CO2] may have significant effects on UKMR-2 to not only produce higher production yields, but also on the production of phenolic constituents with potential physiological impact to human health.

Author Biographies

  • Siti Aishah Mohd Ali, Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
    Pusat Sains Kimia & Teknologi Makanan
  • Jalifah Latip, Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
    Pusat Sains Kimia & Teknologi Makanan

References

IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by Core Writing Team, Pachauri, R.K. and Meyer, L.A. IPCC, Geneva, Switzerland. p. 151.

Weigel, H. J., and Manderscheid, R. 2016. FACE with Crops: Data for Climate Change Impact Models. Braunschweig. Johann Heinrich von Thünen-Institut. 6 p, Thünen à la carte 4a.

DOI: http://dx.doi.org/10.3220/CA1455111790000.

Ward, J. K., and Strain, B. R. 1999. Elevated CO2 Studies: Past, Present and Future. Tree Physiology. 19(4-5): 211- 220.

Frenck, G., van der Linden, L., Mikkelsen, T. N., Brix, H., and Jørgensen, R. B. 2011. Increased [CO2] Does Not Compensate for Negative Effects on Yield Caused by Higher Temperature and [O3] in Brassica napus L. European Journal of Agronomy. 35: 127-134.

Klaiber, J., Dorn, S., and Najar-Rodriguez, A. J. 2013. Acclimation to Elevated CO2 Increases Constitutive Glucosinolate Levels of Brassica Plants and Affects the Performance of Specialized Herbivores from Contrasting Feeding Guilds. Journal of Chemical Ecology. 39(5): 653-65.

Penuelas, J., Estimate, M., and Llusia, J. 1997. Carbon Based Secondary Compounds at Elevated CO2. Photosynthetica. 33(2): 313-316.

Poorter, H., Berkel, V., Baxter, R., den Hertog, J., Dijkstra, P., Gifford, R. M., Giffin, K. L., Rounet, C., Roy, J., and Wong, S. C. 1997. The Effect of Elevated Carbon Dioxide on the Chemical Composition and Construction Costs of Leaves of C3 Species. Plant, Cell and Environment. 20: 472-482.

Estiarte, M., Penuelas, J., Kimball, B.A., Hendrix, D. L., Pinter, P. J. Jr, Wall, G. W., La Morte, R. L., and Hunsacker, D. J. 1999. Free Air CO2-enrichment of Wheat: Leaf Flavonoid Concentration throughout the Growth Cycle. Physiologica Plantarum. 105: 423-433.

De Souza, A. P., Cocuron, J., Garcia, A. C., Alonso, A. P., and Buckeridge, M. S. 2015. Changes in Whole-plant Metabolism During the Grain-filling Stage in Sorghum Grown under Elevated CO2 and Drought. Plant Physiology. 169(3): 1755-1765.

DOI: http://dx.doi.org/10.1104/pp.15.01054.

Nor Lailatul, W. M., Wan Juliana, W. A., Nizam, M. S., and Che Radziah, C. M. Z. 2017. Effects of Elevated Atmospheric CO2 on Photosynthesis, Growth and Biomass in Shorea platycarpa F. Heim (Meranti Paya). Sains Malaysiana. 46(9): 1421-1428.

DOI: http://dx.doi.org/10.17576/jsm-2017-4609-10.

Wong, P. K., Salmah, Y., Ghazali, H. M., and Che Man. Y. B. 2002. Physicoâ€Chemical Characteristics of Roselle (Hibiscus sabdariffa L.). Nutrition and Food Science. 32(2): 68-73.

Mazza, G., and Miniati, E. 1993. Anthocyanins in Fruits, Vegetables, and Grains. United States of America: CRC Press Inc.

Puro, K., Sunjukta, R., Samir, S., Ghatak, S., Shakuntala, I., and Sen, A. 2014. Medicinal Uses of Roselle Plant (Hibiscus sabdariffa L.): A Mini Review. Indian Journal of Hill Farming. 27(1): 81-90.

Hirunpanich, V., Utaipat, A., Morales, N.P., Bunyapraphatsara, N., Sato, H., Herunsale, A., and Suthisisang, C. 2006. Hypocholesterolemic and Antioxidant Effects of Aqueous Extracts Form the Dried Calyx of Hibiscus sabdariffa L. in Hypercholesterolemic Rats. Journal of Ethnopharmacology. 103(2): 252-260.

Kouakou, T. H., Konkon, N. G., Ayolie, K., Obouayeba, A. P., Abeda, Z. H., and Kone, M. 2015. Anthocyanin Production in Calyx and Callus of Roselle (Hibiscus sabdariffa L.) and its Impact on Antioxidant Activity. Journal of Pharmacognosy and Phytochemistry. 4(3): 9-15.

Idris, M. H. M., Siti Balkis, B., Mohamad, O., and Jamaludin, M. 2012. Protective Role of Hibiscus sabdariffa Calyx Extract against Streptozotocin Induced Sperm Damage in Diabetic Rats. EXCLI Journal. 11: 659-669.

Satirah, Z., Siti Nor Farhanah, S.N.S., and Siti Balkis, B. 2016. Hibiscus sabdariffa Linn. (Roselle) Protects Against Nicotine-Induced Heart Damage in Rats. Sains Malaysiana. 45(2): 207-214.

Lislivia, Y., Siti Aishah, M. A., Jalifah, L., Norsyahida, M. F., Siti Balkis, B., and Satirah, Z. 2017. Roselle is Cardioprotective in Diet-Induced Obesity Rat Model with Myocardial Infarction. Life Sciences. 191: 157-165.

DOI: http://dx.doi.org/10.1016/j.lfs.2017.10.030.

Obouayeba, A. P., Djyh, N. B., Diabate, S., Djaman, A. J., N’guessan, J. D., Kone, M., and Kouakou, T. H. 2014. Phytochemical and Antioxidant Activity of Roselle (Hibiscus sabdariffa L.) Petal Extracts. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 5(2): 1453-1465.

Ajoku, G. A., Okwute, S. K., and Okogun, J. I. 2015. Isolation of Hexadecanoic Acid Methyl Ester and 1,1,2-ethanetricarboxylic acid- 1-hydroxy-1, 1-dimethyl ester from the Calyx of Green Hibiscus sabdariffa (Linn). Natural Products Chemistry & Research. 3: 169.

DOI: http://dx.doi.org/10.4172/2329-6836.1000169.

Osman, M., Golam, F., Saberi, S., Majid, N. A., Nagoor, N. H., and Zulqarnain. M. 2011. Morpho-agronomic Analysis of Three Roselle (Hibiscus sabdariffa L.) Mutants in Tropical Malaysia. Australian Journal of Crop Science. 5(10): 1150-6.

Goufo, P., Pereira, J., Figueiredo, N., Beatriz, M., Oliveira, P. P., Carranca, C., Rosa, E. A. S., and Trindade, H. 2014. Effect of Elevated Carbon Dioxide (CO2) on Phenolic Acids, Flavonoids, Tocopherols, Tocotrienols, γ-Oryzanol and Antioxidant Capacities of Rice (Oryza sativa L.). Journal of Cereal Science. 59(1):15-24.

DOI: http://dx.doi.org/10.1016/j.jcs.2013.10.013.

Nur Amirah, Y., Alias, A. A., and Wan Zaliha, W. S. 2015. Growth and Water Relations of Roselle Grown on BRIS Soil Under Partial Root Zone Drying. Malaysia Applied Biology. 44(1): 63-67

Chumsri, P., Airichote, A., and Itharat, A. 2008. Studies on the Optimum Conditions for the Extraction and Concentration of Roselle (Hibiscus sabdariffa Linn.) Extract. Songklanakarin Journal of Science and Technology. 30(1): 133-139.

Waterhouse, A. L. 2002. Determination of Total Phenolics, in Current Protocols in Food Analytical Chemistry. New York: John Wiley and Son.

Giusti, M. M., and Wrolstad, R. E. 2001. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy, in Current Protocols in Food Analytical Chemistry. New York: John Wiley and Son.

Li, X., Zhang, L., Ahammed, G. J., Li, Z. X., Wei, J. P., Shen, C., Yan, P., Zhang, L. P., and Han, W. Y. 2017. Stimulation in Primary and Secondary Metabolism by Elevated Carbon Dioxide Alters Green Tea Quality in Camellia sinensis L. Scientific Reports. 7: 7937.

DOI: http://dx.doi.org/10.1038/s41598-017-08465-1.

Li, X., Zhang, G., Sun, B., Zhang, S., Zhang, Y., Liao, Y., Zhou, Y., Xia, X., Shi, K., and Yu, J. 2013. Stimulated Leaf Dark Respiration in Tomato in an Elevated Carbon Dioxide Atmosphere. Scientific Reports. 3: 3433.

Poorter, H., and Pérez-Soba, M. 2001. The Growth Response of Plants to Elevated CO2 under Non-Optimal Environmental Conditions. Oecologia. 129(1): 1-20.

Schonhof, I., Klaring, H. P., Krumbein, A., and Schreiner. M. 2007. Interaction between Atmospheric CO2 and Glucosinolates in Broccoli. Journal of Chemical Ecology. 33(1): 105-114.

Ghasemzadeh, A., and Jaafar, H. Z. E. 2011. Effect of CO2 Enrichment on Synthesis of Some Primary and Secondary Metabolites in Ginger (Zingiber officinale Roscoe). International Journal of Molecular Sciences. 12(2):1101-1114. DOI: http://dx.doi.org/10.3390/ijms12021101.

Wittwer, S. H. 1992. Rising Carbon Dioxide is Great for Plants. Policy Review Fall. 62: 4-10.

Mohd Hafiz, I., Hawa, Z. E. J., and Nurul Amalina Mohd Zain. 2017. Impact of Elevated CO2 on Leaf Gas Exchange, Carbohydrates and Secondary Metabolites Accumulation in Labisia pumila Benth. Annual Research and Review in Biology. 19(6): 1-16.

DOI: http://dx.doi.org/10.9734/ARRB/2017/36673.

Veteli, T. O., Mattson, W. J., Niemelä, P., Julkunen-Tiitto, R., Kellomäki, S., Kuokkanen, K., and Lavola, A. 2007. Do Elevated Temperature and CO2 Generally have Counteracting Effects on Phenolic Phytochemistry of Boreal Trees? Journal of Chemical Ecology. 33: 287-296. DOI: http://dx.doi.org/10.1007/s10886-006-9235-4.

Wang, S. Y., Bunce, J. A., and Maas, J. L. 2003. Elevated Carbon Dioxide Increases Contents of Antioxidant Compounds in Field-Grown Strawberries. Journal of Agricultural and Food Chemistry. 51(15): 4315-4320.

DOI: http://dx.doi.org/10.1021/jf021172d.

Johnson, S., Barton, A. T., Clark, K. E., Gregory, P. J., and Mcmenemy, L. S. 2010. Elevated Atmospheric CO2 Impairs the Performance of Root-feeding Vine Weevils by Modifying Root Growth and Secondary Metabolites. Global Change Biology. 17(2): 688.

Goncalves, B., Falco, V., Moutinho-Pereira, J., Bacelar, E., Peixoto, F., and Correia, C. 2009. Effects of Elevated CO2 on Grapevine (Vitis Vinifera L.): Volatile Composition, Phenolic Content, and In Vitro Antioxidant Activity of Red Wine. Journal of Agricultural and Food Chemistry. 57(1): 265-273.

DOI: http://dx.doi.org/10.1021/jf8020199

Christian, K. R., and Jackson, J. C. 2009. Changes in Total Phenolic and Monomeric Anthocyanin Composition and Antioxidant Activity of Three Varieties of Sorrel (Hibiscus sabdariffa) during Maturity. Journal of Food Composition and Analysis. 22(7-8): 663-667.

DOI: http://dx.doi.org/10.1016/j.jfca.2009.05.007.

Hussein, R. M., Shahein, Y. E., El Hakim, A. E., and Awad, H. M. 2010. Biochemical and Molecular Characterization of Three Colored Types of Roselle (Hibiscus sabdariffa L.). Journal of American Science. 6(11): 726-733.

Mohd-Esa, N., Fong, S.H., Ismail, A., and Chew, L.Y.2010. Antioxidant Activity in Different Parts of Roselle (Hibiscus sabdariffa L.) Extracts and Potential Exploitation of the Seeds. Food Chemistry. 122(4): 1055-1060.

Sukwattanasinit, T., Burana-osot, J., and Sotanaphun, U. 2007. Spectrophotometric Method for Quantitative Determination of Total Anthocyanins and Quality Characteristics of Roselle (Hibiscus sabdariffa). Planta Medica. 73(14): 1517-1522.

Sharara, M. S. 2017. Copigmentation Effect of Some Phenolic Acids on Stabilization of Roselle (Hibiscus sabdariffa) Anthocyanin Extract. American Journal of Food Science and Technology. 5(2): 45-52.

Bernal, F. A., Orduz-Diaz, L. L., and Coy-Barrera, E. 2016. Application of FARAFAC and OPLS-DA Analysis on HPLC Fingerprints for the Characterization of Hibiscus sabdariffa Calyces. Quimica Nova. 39(2): 160-166.

DOI: http://dx.doi.org/10.5935/0100-4042.20160007.

Rodreguez-Medina, I. C., Debon, R. B., Molina, V. M., Villaverde, C. A., Joven, J., Menendez, J. A., Carretero, A. S., and Gutierrez, A. F. 2009. Direct Characterization of Aqueous Extract of Hibiscus sabdariffa using HPLC with Diode Array Detection Coupled to ESI and Ion Trap MS. Journal of Separation Science. 32(20): 3441-3448.

DOI: http://dx.doi.org/10.1002/jssc.200900298.

Ifie, I., Ifie, B. E., Ibitoyed, D. O., Marshalla, L. J., and Williamson, G. 2018. Seasonal Variation in Hibiscus sabdariffa (roselle) Calyx Phytochemical Profile, Soluble Solids and α-Glucosidase Inhibition. Food Chemistry. 261: 164-168.

DOI: https://doi.org/10.1016/j.foodchem.2018.04.052.

Seal, T. 2016. Quantitative HPLC Analysis of Phenolic Acids, Flavonoids and Ascorbic Acid in Four Different Solvent Extracts of Two Wild Edible Leaves, Sonchus arvensis and Oenanthe linearis of North-Eastern Region in India. Journal of Applied Pharmaceutical Science. 6(2): 157-166.

DOI: http://dx.doi.org/10.7324/JAPS.2016.60225.

Deshmukh, S. R., Wadegaonkar, V. P., Bhagat, R. P., and Wadegaonkar, P. A. 2011. Tissue Specific Expression of Anthraquinones, Flavonoids and Phenolics in Leaf, Fruit and Root Suspension Cultures of Indian Mulberry (Morinda citrifola L.). Plant Omics Journal. 4(1): 6-13.

Biswas, N., Balac, P., Narlakanti, S. K., Enamul Haque, M. D., and Mehedi Hassan, M. D. 2013. Identification of Phenolic Compounds in Processed Cranberries by HPLC Method. Journal of Nutrition and Food Science. 3: 181.

DOI: http://dx.doi.org/10.4172/2155-9600.1000181.

Alarcon-Alonso, J., Zamilpa, A., Aguilar, F. A., Herrera-Ruiz, M., Tortoriello, J., and Jimenez-Ferrer, E. 2012. Pharmacological Characterization of The Diuretic Effect of Hibiscus sabdariffa Linn (Malvaceae) Extract. Journal of Ethnopharmacology. 139(3): 751-756.

Bouayed, J., Rammal, H., Dicko, A., Younos, C., and Soulimani, R. 2007. Chlorogenic Acid, A Polyphenol from Prunus domestica (Mirabelle), with Coupled Anxiolytic and Antioxidant Effects. Journal of the Neurological Sciences. 262(1-2): 77-84.

Lan, W. U. 2007. Effect of Chlorogenic Acid on Antioxidant Activity of Flos lonicerae Extracts. Journal of Zhejiang University Science. 8(9): 673-679.

Zhang, Z. M., Liu, L. H., Zhang, M., Zhang, Y. S., and Wang, Q. M. 2014. Effect of Carbon Dioxide Enrichment on Health-Promoting Compounds and Organoleptic Properties on Tomato Fruits Grown in Greenhouse. Food Chemistry. 153: 157-163.

Wu, X., Sun, S., Xing, G., Wang, G., Wang, F., and Xu, Z. 2017. Elevated Carbon Dioxide Altered Morphological and Anatomical Characteristics, Ascorbic Acid Accumulation, and Related Gene Expression during Taproot Development in Carrots. Frontiers in Plant Science. 7: 20-26.

DOI: http://dx.doi.org/10.3389/fpls.2016.02026.

Islam, S. M., Matsui, T., and Yoshida, Y. 1996. Effect of Carbon Dioxide Enrichment on Physicochemical and Enzymatic Changes in Tomato Fruits at Various Stages of Maturity. Science Horticulture. 65(2-3): 137-149.

Khan, I., Azam, A., and Mahmood, A. 2013. The Impact of Enhanced Atmospheric Carbon Dioxide on Yield, Proximate Composition, Elemental Concentration, Fatty Acid and Vitamin C Contents of Tomato (Lycopersicon esculentum). Environmental Monitoring and Assessment. 185(1): 205-214.

Assis, S. A., Oliveira, O. M. M. F., and Lima, D. C. 2001. Activity of Pectin methyl esterase, Pectin Content and vitamin C in Acerola Fruit at Various Stages of Fruit Development. Food Chemistry. 74(2): 133-136.

Lee, J. K., and Kader, A. A. 2000. Preharvest and Posthaverst Factor Influencing Vitamin C Content of Horticultural Crops. Postharvest Biology and Technology. 20(3): 207-220.

Downloads

Published

2019-04-01

Issue

Section

Science and Engineering

How to Cite

INFLUENCE OF ELEVATED CO2 ON THE GROWTH AND PHENOLIC CONSTITUENTS PRODUCTION IN HIBISCUS SABDARIFFA VAR. UKMR-2. (2019). Jurnal Teknologi, 81(3). https://doi.org/10.11113/jt.v81.13241