POTASSIUM CHLORIDE IMPREGNATED ON ACTIVATED GREEN MUSSEL SHELLS (KCL/ AGMS): AN ACTIVE CATALYST TOWARDS KNOEVENAGEL CONDENSATION
DOI:
https://doi.org/10.11113/jt.v81.13243Keywords:
Green mussel shell, KCl/AGMS, solid catalyst, Knoevenagel condensationAbstract
Knoevenagel condensation represents one of the most important C-C bond forming reactions in organic chemistry. The typical reaction was carried out commonly in the presence of homogeneous acid as well as basic catalysts. With the problems like corrosive and high catalyst amount, the search for a new heterogeneous catalyst is an attractive research topic in this area. KCl supported on activated green mussel shell (KCl/AGMS) was prepared by impregnation method and characterized by some analytical instrumentations (IR, XRD, SEM, EDAX). The prepared materials shows an incredible catalytic ability in Knoevenagel condensation of ethyl acetoacetate with aromatic aldehydes to produce condensed products 3a-3d in medium to good yields (60-94%). The findings disclose a mild route for the synthesis of Knoevenagel products using a cost-effective and green catalyst.
References
Tangale, N. P., Sonar, S. K., Niphadkar, P. S., and Joshi, P. N. 2016. Hierarchical K/LTL zeolites: Synthesis by Alkali Treatment, Characterization and Catalytic Performance in Knoevenagel Condensation Reaction. Journal of Industrial and Engineering Chemistry. 40: 128-136.
Sakthivel, B. and Dhakshinamoorthy, A. 2017. Chitosan as a Reusable Solid Catalyst for Knoevenagel Condensation Reaction. Journal of Colloid and Interface Science. 485: 75-80.
Veloso, C. O., Henriques, C. A., Dias, A. G., de Lima, E. C., Souza, B. M. and Monteiro, J. L. F. 2011. A Green Synthesis of α, β-unsaturated Carbonyl Compounds from Glyceraldehyde Acetonide. Quimica Nova. 34(4): 617-620.
Ren, Y. M. and Cai, C. 2007. Knoevenagel Condensation of Aromatic Aldehydes with Active Methylene Compounds using a Catalytic Amount of Iodine and K2CO3 at Room Temperature. Synthetic Communication. 37: 2209-2213.
Phadtare, S.B. and Shankarling, G.S. 2012. Greener Coumarin Synthesis by Knoevenagel Condensation using Biodegradable Choline Chloride. Environmental Chemistry Letters. 10: 363-368.
Heaner, W. L., Gelbaum, C. S., Gelbaum, L., Pollet, P., Richman, K. W., DuBay, W., et al. 2013. Indoles via Knoevenagel-Hemetsberger Reaction Sequence. RSC Advances. 3: 13232-13242.
Sinija, P. S. and Sreekumar, K. 2015. Facile Synthesis of Pyranopyrazoles and 3,4-dihydropyrimidin-2(1H)-ones by a Ti-grafted Polyamidoamine Dendritic Silica Hybrid Catalyst Via a Dual Activation Route. RSC Advances. 5: 101776-101788.
Mangala, K. and Sreekumar, K. 2012. Polycarbosilane-Supported Titanium (IV) Catalyst for Knoevenagel Condensation Reaction. Applied Organometallic Chemistry. 27: 73-78.
Schejn, A., Mazet, T., Falk, V., Balan, L., Aranda, L., Medjahdi, G. and Schneider, R. 2015. Fe3O4@ZIF-8: Magnetically Recoverable Catalysts by Loading Fe3O4 Nanoparticles inside a Zinc Imidazolate Framework. Dalton Transaction. 44: 10136-10140.
Wach, A., Drozdek, M., Dudek, B., Biazik, M., Latka, P., Michalik, M. and Kustrowski, P. 2015. Differences in Catalytic Activity of Poly(vinylamine) Introduced on Surface of Mesoporous SBA-15 by Grafting from and Grafting onto Method in Knoevenagel Condensation. 119(34): 19954-19966.
Perez, C. N., Monteiro, J. L. F., Nieto, J. M. L. and Henriques, C. A. 2009. Influence of Basic Properties of Mg, Al-mixed Oxides on Their Catalytic Activity in Knoevenagel Condensation between Benzaldehyde and Phenylsulfonylacetonitrile. 32(9): 2341-2346.
Pawar, H. S., Wagh, A. S. and Lali, A. M. 2016. Triethylamine: A Potential N-base Surrogate for Pyridine in Knoevenagel Condensation of Aromatic Aldehydes and Malonic Acid. New Journal of Chemistry. 40: 4962-4968.
Dalessandro, E. V., Collin, H. P., Guimaraes, L. G. L. and Pliego, M. S. V. R. 2017. Mechanism of the Piperidine-catalyzed Knoevenagel Condensation Reaction in Methanol: The Role of Iminium and Enolate Ions. The Journal of Physical Chemistry B. 121(20): 5300-5307.
Ogiwara, Y., Takahashi, K., Kitazawa, T. and Sakai, N. 2015. Indium (III)-catalyzed Knoevenagel Condensation of Aldehydes and Activated Methylenes Using Acetic Anhydride as a Promoter. The Journal of Organic Chemistry. 80(6): 3101-3110.
Gao, G.-H., Lu, L., Zou, T., Gao, J.-B., Liu, Y. and He, M.-Y. 2007. Basic Ionic Liquid: A Reusable Catalyst for Knoevenagel Condensation in Aqueous Media. Chemical Research in Chinese Universities. 23(2): 169-172.
Player, L. C., Chan, B., Turner, P., Masters, A. F. and Maschmeyer, T. 2018. Bromozincate Ionic Liquids in the Knoevenagel Condensation Reaction. Applied Catalysis B: Environmental. 223: 228-233.
Xu, J., Shen, K., Xue, B. and Li, Y.-X. 2013. Microporous Carbon Nitride as an Effective Solid Base Catalyst for Knoevenagel Condensation Reactions. Journal of Molecular Catalysis A: Chemical. 372: 105-113.
Sharma, P. and Sasson, Y. 2017. Highly Active g-C3N4 as a Solid Base Catalyst for Knoevenagel Condensation Reaction under Phase Transfer Condition. RSC Advances. 7: 25589-25596.
Ikeue, K., Miyoshi, N., Tanaka, T. and Machida, M. 2011. Ca-containing Mesoporous Silica as a Solid Base Catalyst for the Knoevenagel Condensation Reaction. Catalysis Letters. 141(6): 877-881.
Gupta, M., Gupta, R. and Anand, M. 2009. Hydroxyapatite Supported Cesium Carbonate as a Recyclable Solid Base Catalyst for the Knoevenagel Condensation in Water. Beilstein Journal of Organic Chemistry. 5: 68(1-7).
Sugino, K., Oya, N., Yoshie, N. and Ogura, M. 2011. A Simple Modification Creates a Great Difference: New Solid-base Catalyst Using Methylated N-substituted SBA-15. Journal of the American Chemical Society. 133(50): 20030-20032.
Deng, Q. and Li, Q. 2018. Facile Preparation of Mg-doped Graphitic Carbon Nitride Composites as a Solid Base Catalyst for Knoevenagel Condensations. Journal of Materials Science. 53(1): 506-515.
Ren, Y., Lu, J. X., Jiang, O., Cheng, X. and Chen, J. 2015. Amine-grafted on Lanthanide Metal-organic Frameworks: Three Solid Base Catalysts for Knoevenagel Condensation Reaction. Chinese Journal of Catalysis. 36(11): 1949-1956.
Qiao, Y., Teng, J., Wang, S. and Ma, H. 2018. Amine-functionalized Sugarcane Bagasse: A Renewable Catalyst for Efficient Continuous Flow Knoevenagel Condensation Reaction at Room Temperature. Molecules. 23(1): 43(1-13).
Corma, A., Iborra, S., Primo, J. and Rey, F. 1994. One-step Synthesis of Citronitril on Hydrotalcite Derived Base Catalysts. Applied Catalysis A: General. 114(2): 215-225.
Seto, H., Imai, K., Hoshino, Y. and Miura, Y. 2016. Polymer Microgel Particles as Basic Catalysts for Knoevenagel Condensation in Water. Polymer Journal. 48: 897-904.
Almeida, K. A. and Cardoso, D. 2013. Basic Activity of Y Zeolite Containing Alkylammonium Cations in Knoevenagel Condensation. Catalysis Today. 213: 122-126.
Buasri, A., Chaiyut, N., Loryuenyong, V., Worawanitchaphong, P. and Trongyong, S. 2013. Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production. The Scientific World Journal. 2013: ID 460923, 7 pages. Doi: 10.1155/2013/460923
Pena-Rodriguez, S., Bermudez-Couso, A., Novoa-Munoz, J. C., Arias-Estevez, M., Fernandez-Sanjurjo, M. J., Alvarez-Rodriguez, E., et al. 2013. Mercury Removal Using Ground and Calcined Mussel Shell. Journal of Environmental Sciences. 25(12): 2476-2486.
El Haddad, M., Regti, A., Laamari, M. R., Slimani, R., Mamouni, R., El Antri, S., et al. 2014. Calcined Mussel Shells as a New and Eco-Friendly Biosorbent to Remove Textile Dyes from Aqueous Solutions. Journal of the Taiwan Institute of Chemical Engineers. 45(2): 533-540.
Mar, W. W. and Somsook, E. 2012. Methanolysis of Soybean Oil over KCl/CaO Solid Base Catalyst for Biodiesel Production. ScienceAsia. 38: 90-94.
Boey, P., Maniam, G. P., Hamid, S. A. and Ali, D. M. H. 2011. Utilization of Waste Cockle Shell (Anadara granosa) in Biodiesel Production from Palm Olein: Optimization Using Response Surface Methodology. Fuel. 90(7): 2353-2358.
Suryaputra, W., Winata, I., Indraswati, N. and Ismadji, S. 2013. Waste Capiz (Amusium cristatum) Shell as a New Heterogeneous Catalyst for Biodieseil Production. Renewable Energy. 50: 795-799.
Mardiana, L., Ardiansah, B., Septiarti, A., Bakri, R. and Kosamagi, G. 2017. Ultrasound-assisted Synthesis of Curcumin Analogs Promoted by Activated Chicken Eggshells. AIP Conference Proceedings. 1862: Article ID 030096. Doi: 10.1063/1.4991200
Hu, K., Wang, H., Liu, Y. and Yang, C. 2015. KNO3/CaO as Cost-effective Heterogeneous Catalyst for the Synthesis of Glycerol Carbonate from Glycerol and Dimethyl Carbonate. Journal of Industrial and Engineering Chemistry. 28: 334-343.
Mardiana, L., Ardiansah, B., Bakri, R., Cahyana, A. H., Anita, Y. and Aziza, N. P. 2017. Utilization of Eggshell-derived Material as a Solid Base Catalyst for Efficient Synthesis of Substituted Chalcones. Jurnal Teknologi. 79(5): 175-182.
Safaei-Ghomi, J., Ghasemzadeh, M. A. and Mehrabi, M. 2013. Calcium Oxide Nanoparticles Catalyzed One-step Multicomponent Synthesis of Highly Substituted Pyridines in Aqueous Ethanol Media. Scientia Iranica. 20(3): 549-554.
Mardiana, L., Bakri, R., Septiarti, L. and Ardiansah, B. 2017. The Synthesis of 2-(5-(3-methoxyphenyl)-4,5-dihydro-1H-pyrazol-3-yl)phenol using Sodium Impregnated on Activated Chicken Eggshells Catalyst. IOP Conference Series: Materials Science and Engineering. 188: Article ID 012022. Doi: 10.1088/1757-899X/188/1/012022.
Patil, S., Jadhav, S. D. and Shinde, S. K. 2012. CES as an Efficient Natural Catalyst for Synthesis of Schiff Bases Under Solvent-free Conditions: An Innovative Green Approach. Organic Chemistry International. 2012: Article ID 153159 (5 pages). Doi: 10.1155/2012/153159.
Mardiana, L., Ardiansah, B., Bakri, R. and Cahyana, H. 2016. Catalytic Activity of Na-CaO Nanocrystalline for Vanillin-based Chalcone Syntheses. AIP Conference Proceedings. 1729: Article ID 020051. Doi: 10.1063/1.4946954.
Nurfitri, I., Pragas, G., Hindryawati, N. and Yusoff, M. M. 2013. Potential of Feedstock and Catalysts from Waste in Biodiesel Preparation: A Review. Energy Conversion Management. 74: 395-402.
Won, Y.-H., Jang, H. S., Chung, D.-W. and Stanciu, L. A. 2010. Multifunctional Calcium Carbonate Microparticles: Synthesis and Biological Applications. Journal of Materials Chemistry. 20: 7728-7733.
Ni, M. and Ratner, B. D. 2008. Differentiation of Calcium Carbonate Polymorphs by Surface Analysis Techniques – An XPS and TOF-SIMS Study. Surface and Interface Analysis. 40(10): 1356-1361.
Hayakawa, S., Hajima, Y., Qiao, S., Namatame, H. and Hirokawa, T. 2008. Characterization of Calcium Carbonate Polymorphs with Ca K Edge X-ray Absorption Fine Structure Spectroscopy. Analytical Sciences. 24: 835-837.
Tangboriboon, N., Kunanuruksapong, R. and Sirivat, A. 2012. Preparation and Properties of Calcium Oxide from Eggshells via Calcination. Materials Science-Poland. 30(4): 313-322.
Geist, J., Auerswald, K. and Boom, A. 2005. Stable Carbon Isotopes in Freshwater Mussel Shells: Environmental Record or Marker for Metabolic Activity? Geochimica et Cosmochimica Acta. 69(4): 3545-3554.
Hu, S., Wang, Y. and Han, H. 2011. Utilization of Waste Freshwater Mussel Shell as an Economic Catalyst for Biodiesel Production. Biomass and Bioenergy. 35(8): 3627-3635.
Xing, S., Li, J., Niu, G., Han, Q., Zhang, J. and Liu, H. 2018. Chiral and Amine Groups Functionalized Polyoxomethalate-based Metal-organic Frameworks for Synergic Catalysis in Aldol and Knoevenagel Condensation. Molecular Catalysis. 458: 83-88.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.