A Review on Influence of Alloying Elements on the Microstructure and Mechanical Properties of Cu-Al-Ni Shape Memory Alloys

Authors

  • Safaa Najah Saud Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Esah Hamzah Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Tuty Asma Abu Bakar Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Raheleh Hosseinian.S Department of Physics, Faculty of Science, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v64.1338

Keywords:

Shape mmory alloys, Cu-Al-Ni, martensitic transformation

Abstract

Cu–Al–Ni shape memory alloys (SMAs) have been developed for high temperatures engineering components such as sensor and actuators, due to their ability to work at temperatures near 200°C, rather than NiTi and Cu–Zn–Al alloys whose maximum working temperatures around 100°C. These alloys are widely used because they are much cheaper than NiTi/Cu-Zn-Al and do not require any complicated processing during their manufacturing as do for other shape memory alloys. In addition, these alloys have a small hysteresis and high transformation temperatures compared with other alloys. Despite all these advantages, these alloys have their limitations such as brittleness and low phase recovery strains and stress. The present review describes the role of alloying elements on the properties of Cu-Al-Ni shape memory alloys. It has been found that the additions of alloying elements have a significant effect on the formation, morphology, and structure of the obtained martensite, therefore, the properties of these alloys varied in accordance of these effects.


References

C. M. W. K. Otsuka. 1998. Shape Memory Materials. Cambridge University Press, Cambridge.

J. Van Humbeeck. 2001. Shape Memory Alloys: A Material and Technology. Adv. Eng Mate. 3: 837–850.

K. Mehrabi, M. Bruncko, A. C. 2012. Kneissl: Microstructure, Mechanical and Functional Properties of NiTi Based Shape Memory Ribbons. J. Alloys and Compounds. 526: 45–52.

X. R. K Otsuka. 2005. Physical Metallurgy of Ti–Ni-based Shape Memory Alloys. Progress in Materials Science. 50: 511–678.

G. Lojen, I. Anžel, A. Kneissl, A. Križman, E. Unterweger, B. Kosec, M. Bizjak. 2005. Microstructure of Rapidly Solidified Cu–Al–Ni Shape Memory Alloy Ribbons. J. Mate Processing Tech. 162–163: 220–229.

S. M. M. Fremond. 1996. Shape Memory Alloys. Springer-Verlag, Wien, New York.

M. H. W.a. R. J. B. D. E. Hodgson. 1991. Shape Memory Alloys. 10 ed. American Society for Metals, Cleverland, Ohio.

Y. Chen, X. Zhang, D. C. Dunand, C. A. Schuh. 2009. Shape Memory and Superelasticity in Polycrystalline Cu--Al--Ni Microwires. Applied Physics Letters. 95: 171906–171903.

A. C. Kneissl, E. Unterweger, G. Lojen, I. Anzel. 2005. Microstructure and Properties of Shape Memory Alloys. Microscopy and Microanalysis. 11: 1704–1705.

K. K. K. Sugimoto, H. Matsumoto, S. Komatsu, K. Akamatsu and T. Sugimoto. 1982. Grain-Refinement and the Related Phenomena in Quaternary Cu-Al-Ni-Ti Shape Memory Alloys. Journal of Physics. 43: C4–761.

L. C. Brown. G. N. Sure. 1984. The Mechanical Properties of Grain Refined β- Cu-Al-Ni strain- Memory Alloys. Metall. Trans. A 15: 1613–1621.

J. S.Lee and C. M. Wayman. 1986. Grain Refinment of a Cu-Al-Ni Shape Memory Alloy by Ti and Zr Additions. Trans. Jpn. Inst. Met. 27: 584–591.

J. Dutkiewicz, T. Czeppe, J. Morgiel. 1999. Effect of Titanium on Structure and Martensic Transformation in Rapidly Solidified Cu–Al–Ni–Mn–Ti Alloys. Materials Science and Engineering. A 273–275: 703–707.

K. Adachi, Y. Hamada, Y. Tagawa. 1987. Crystal Structure of the X-phase in Grain-refined Cu-Al-Ni-Ti Shape Memory Alloys. Scripta Metallurgica. 21: 453–458.

Ratchev, P., J. Van Humbeeck, L. Delaey. 1993. On the Formation of 2H Stacking Sequence in 18R Martensite Plates in a Precipitate Containing CuAlNiTiMn alloy. Acta Metallurgica Et Materialia. 41(8): 2441–2449.

V. Sampath. 2005. Studies on the Effect of Grain Refinement and Thermal Processing on Shape Memory Characteristics of Cu–Al–Ni alloys. Smart Materials and Structures. 14: S253.

K.O. S. Miyazaki, H. Sakamoto, K. Shimizu. 1981. Study of Fracture In Cu-Al-Ni Shape Memory Bicrystals. Trans. Jpn. Inst. Met. 22: 244–252.

P. C. C. S. W. Husain. 1987: Grain Boundary Embrittlement in Cu-AI-Ni β Phase Alloys. J. Mater. Sci. 22: 2351–2356.

J. S. Lee, C. M. Wayman. 1986. Grain Refinement of Cu-Zn-Al Shape Memory Alloys. Metallography. 19: 401–419.

Y. Gao, M. Zhu, J. K. L. Lai. 1998. Microstructure Characterization and Effect of Thermal Cycling and Ageing on Vanadium-doped Cu–Al–Ni–Mn high-temperature Shape Memory Alloy. Journal of Materials Science. 33: 3579–3584.

J. Kim, D. Roh, E. Lee, Y. Kim. 1990. Effects on Microstructure and Tensile Properties of a Zirconium Addition to a Cu-Al-Ni shape Memory Alloy. Metallurgical and Materials Transactions. A 21: 741–744.

K. Adachi, K. Shoji, Y. Hamada. 1989. Formation of (X) Phases and Origin of Grain Refinement Effect in Cu-Al-Ni Shape Memory Alloys Added with Titamium. ISIJ International. 29: 378–387.

S. K. Vajpai, R. K. Dube, S. Sangal. 2011. Microstructure and Properties of Cu-Al-Ni Shape Memory Alloy Strips Prepared Via Hot Densification Rolling of Argon Atomized Powder Preforms. Materials Science and Engineering. A 529: 378–387.

M. Zhu, X. Ye, C. Li, G. Song, Q. Zhai. 2009. Preparation of Single Crystal CuAlNiBe SMA and Its Performances. Chem Inform. 40.

M. A. Morris. 1991. Influence of Boron Additions On Ductility And Microstructure Of Shape Memory Cu-Al-Ni alloys. Scripta Metallugica. 25: 2541–2546.

M. A. Morris. 1992. High Temperature Properties of Ductile Cu-Al-Ni Shape Memory Alloys with Boron Additions. Acta Metal. Mater. 40: 1573–1586.

Huaping Xu, Gaofeng Song, Xiemin Mao. 2011. Influence of Be and Ni to Cu-Al Alloy Shape Memory Performance. Advanced Materials Research. 197–198: 1258–1262.

R. M. Gomes, A. C. R.Veloso, V. T. L.Buono, S. J. G.Lima, and T. A. A Melo. 2008. Pseudoelasticity of Cu- 13.8 Al-Ni alloys containing V and Nb. Trans Tech Publications. Switzerland.

Downloads

Published

2013-09-10

Issue

Section

Science and Engineering

How to Cite

A Review on Influence of Alloying Elements on the Microstructure and Mechanical Properties of Cu-Al-Ni Shape Memory Alloys. (2013). Jurnal Teknologi, 64(1). https://doi.org/10.11113/jt.v64.1338