ANALYSIS OF EVAPORATOR EFFECTIVENESS ON 1/2 CYCLE REFRIGERATION SYSTEMS: A CASE STUDY ON LPG FUELED VEHICLES

Authors

  • Muji Setiyo Department of Automotive Engineering, Universitas Muhammadiyah Magelang, Magelang, Indonesia Center for Energy Studies, Universitas Muhammadiyah Magelang, Magelang, Indonesia
  • Budi Waluyo Department of Automotive Engineering, Universitas Muhammadiyah Magelang, Magelang, Indonesia Center for Energy Studies, Universitas Muhammadiyah Magelang, Magelang, Indonesia
  • Nurkholis Hamidi Department of Mechanical Engineering, Universitas Brawijaya, Malang, Indonesia

DOI:

https://doi.org/10.11113/jt.v82.13386

Keywords:

LPG fueled vehicle, ½ cycle refrigeration, COP, evaporator effectiveness

Abstract

The ½ cycle refrigeration system on LPG fueled vehicles has a significant cooling effect. However, the cooling is very dependent on the heat exchange process in the evaporator. Therefore, this paper analyses the deviation of the actual cooling curve from the ideal scenario carried out on a laboratory scale. The analytical method used is the calculation of the effectiveness of the evaporator, which compares the actual to the potential heat transfer capacity. The LPG flow rate was varied from 1-6 g/s, while the evaporation pressure ranged between 0.05, 0.10, and 0.15 MPa, which applied to compact type evaporators with dimensions of 262 ´ 200 mm, with a thickness of 65 mm. The research results confirm that the higher the LPG mass flow rate, the lower the heat transfer effectiveness. At the higher LPG mass flow rate, heat transfer occurs less optimally,  due to incomplete evaporation of LPG in the evaporator.

References

Bhatti, M. S. 1999. Evolution of Automotive Air Conditioning Riding in Comfort: Part II. ASHRAE Journal. 41(9): 44-50.

https://www.ashrae.org/.../docLib/.../2003627102420_326.pdf.

Automobile. 2010. Automotive Air Conditioning-History, Automobile Megazine. (Accessed: 12 June 2016), http://www.automobilemag.com/news/automotive-air-conditoning-history/.

Zima, M. et al. 2014. Improving the Fuel Efficiency of Mobile A/C Systems with Variable Displacement Compressors. SAE Technical Paper. 2014-1–7. 1-6. Doi: 10.4271/2014-01-0700.

Yang, Z. and Wu, X. 2013. Retrofits and Options for the Alternatives to HCFC-22. Energy. 59(2013): 1-21.

Doi: 10.1016/j.energy.2013.05.065.

Daly, S. 2006. Automotive Air-conditioning and Climate Control Systems, Igarss 2014. Oxford: Elsevier Ltd. http://www.sciencedirect.com/science/book/9780750669559.

Xie, Y. et al. 2019. A Self-learning Intelligent Passenger Vehicle Comfort Cooling System Control Strategy. Applied Thermal Engineering. 114646.

Doi: 10.1016/j.applthermaleng.2019.114646.

Aiman, A. et al. 2014. Efficient and “Green†Vehicle Air Conditioning System using Electric Compressor. Energy Procedia. 270-273.

Doi: 10.1016/j.egypro.2014.11.1105.

Guo, Y. et al. 2017. Development of a Virtual Variable-speed Compressor Power Sensor for Variable Refrigerant. International Journal of Refrigeration. 74(2017): 71-83. Doi: 10.1016/j.ijrefrig.2016.09.025.

Chandrakar, D. and Saikhedkar, N. K. 2016. Design of Ammonia Water Vapour Absorption Air Conditioning System for a Car by Waste Heat Recovery from Engine Exhaust Gas. Advance Physics Letter. 3(2): 24-29.

Tiwari, H. and Parishwad, G. V. 2012. Adsorption Refrigeration System for Cabin Cooling of Trucks. International Journal of Emerging Technology and Advanced Engineering. 2(10): 337-342.

http://www.ijetae.com/files/Volume2Issue10/IJETAE_1012_60.pdf.

Vasta, S. et al. 2012. Development and Lab-test of a Mobile Adsorption Air-conditioner. International Journal of Refrigeration. 35(3): 701-708.

Doi: 10.1016/j.ijrefrig.2011.03.013.

Aleixo, A. et al. 2010. Using Engine Exhaust Gas as Energy Source for an Absorption Refrigeration System. Applied Energy. 87(4): 1141-1148.

Doi: 10.1016/j.apenergy.2009.07.018.

Rêgo, A. T. et al. 2014. Automotive Exhaust Gas Flow Control for an Ammonia-water Absorption Refrigeration System. Applied Thermal Engineering. 64(1–2): 101-107. Doi: 10.1016/j.applthermaleng.2013.12.018.

Arrieta, F. R. P. et al. 2016. Exergoeconomic Analysis of an Absorption Refrigeration and Natural Gas-fueled Diesel Power Generator Cogeneration System. Journal of Natural Gas Science and Engineering. 36: 155-164. Doi: 10.1016/j.jngse.2016.10.022.

Aly, W. I. A. et al. 2017. Thermal Performance of a Diffusion Absorption Refrigeration System Driven by Waste Heat from Diesel Engine Exhaust Gases. Applied Thermal Engineering. Elsevier Ltd. 114: 621-630.

Doi: 10.1016/j.applthermaleng.2016.12.019.

Sowjanya, L. 2015. Thermal Analysis of a Car Air Conditioning System Based On an Absorption Refrigeration Cycle Using Energy from Exhaust Gas of an Internal Combustion Engine, Advanced Engineering and Applied Sciences. 3(4): 47-53. Available at: http://www.urpjournals.com.

Koli, S. R. and Yadav, S. D. 2013. Experimental Investigation of Air Conditioning System in Automobile Using A Constant Speed Biogas Engine. International Journal of Automobile Engineering Research and Development. 3(1): 15-20.

http://www.tjprc.org/view-archives.php?year=2013&id= 23&jtype=2&page=1.

Damrongsak, D. and Tippayawong, N. 2010. Experimental Investigation of an Automotive Air-conditioning System Driven by a Small Biogas Engine. Applied Thermal Engineering. 30(5): 400-405. Doi: 10.1016/j.applthermaleng.2009.09.003.

Kumar, S. et al. 2014. Analysis on Turbo Air-conditioner: An Innovative. International Journal of Mechanical and Production Engineering. 2(3): 38-41.

Doi: IJMPE-IRAJ-DOI-566.

Li, C., Brewer, E., Pham, L., and Jung, H. 2018. Reducing Mobile Air Conditioner (MAC) Power Consumption Using Active Cabin-air-recirculation in a Plug-in Hybrid Electric Vehicle (PHEV). World Electric Vehicle Journal. 9(4): 1-15. Doi: 10.3390/wevj9040051.

Weng, C. L., Kau, L. J. 2019. Design and Implementation of a Low-energy-consumption Air-conditioning Control System for Smart Vehicle. Journal of Healthcare Engineering. 1-14. Doi: 10.1155/2019/3858560.

Zulkifli, A. A. et al. 2015. Impact of the Electric Compressor for Automotive Air Conditioning System on Fuel Consumption and Performance Analysis. IOP Conference Series: Materials Science and Engineering. 100(1). Doi: 10.1088/1757-899X/100/1/012028.

Abas, M. A. et al. 2017. Fuel Consumption Evaluation of SI Engine Using Start-stop Technology. Journal of Mechanical Engineering and Sciences. 11(4): 2967-78. Doi: 10.15282/jmes.11.4.2017.1.0267.

Shete, K. 2015. Influence of Automotive Air Conditioning load on Fuel Economy of IC Engine Vehicles. International Journal of Scientific & Engineering Research. 6(8): 1367-1372.

Setiyo, M. et al. 2017. Numerical Study on Cooling Effect Potential from Vaporizer Device of LPG Vehicle. Journal of Engineering Science and Technology. 12(7): 1766-1779.

Setiyo, M. et al. 2017. Cooling Effect Potential from Liquefied Petroleum Gas Flow in the Fuel Line of Vehicle. International Journal of Automotive and Mechanical Engineering Online. 14(4): 2229-8649.

Doi: 10.15282/ijame.14.4.2017.9.0370.

Setiyo, M., Soeparman, S., Hamidi, N. and Wahyudi, S. 2017. Cooling Effect Characteristics of a ½ Cycle Refrigeration System on an LPG Fuel System. International Journal of Refrigeration. Elsevier Ltd. 82: 227–237. Doi: 10.1016/j.ijrefrig.2017.06.009.

Masi, M. and Gobbato, P. 2012. Measure of the Volumetric Efficiency and Evaporator Device Performance for a Liquefied Petroleum Gas Spark Ignition Engine. Energy Conversion and Management. Elsevier Ltd. 60: 18-27.

doi: 10.1016/j.enconman.2011.11.030.

Stoecker, W. F. 1989. Design Of Thermal Systems. Singapore: McGraw-Hill.

Çengel, Y. A. and Boles, M. A. 2007. Thermodynamics: An Engineering Approach. Sixth Edit. Singapore: McGraw-Hill.

Downloads

Published

2020-04-06

Issue

Section

Science and Engineering

How to Cite

ANALYSIS OF EVAPORATOR EFFECTIVENESS ON 1/2 CYCLE REFRIGERATION SYSTEMS: A CASE STUDY ON LPG FUELED VEHICLES. (2020). Jurnal Teknologi, 82(3). https://doi.org/10.11113/jt.v82.13386