FUNDAMENTALS OF CREEP, TESTING METHODS AND DEVELOPMENT OF TEST RIG FOR THE FULL-SCALE CROSSARM: A REVIEW

Authors

  • M. R. M. Asyraf Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • M. R. Ishak Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia Aerospace Malaysia Research Centre (AMRC), Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang Selangor, Malaysia Laboratory of Biocomposite Technology (BIOCOMPOSITE), Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • M. R. Razman Research Centre for Sustainability Science and Governance (SGK), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
  • M. Chandrasekar Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v81.13402

Keywords:

Creep, Uniaxial Tension Test, Test Rig, Crossarm, Transmission Line Tower

Abstract

Most of transmission line (TL) towers are designed and fabricated in the form of lattice using galvanized steel. The crossarm of the TL is made of Neobalanocarpus or Chengal wood. Recently, it has been reported by an electrical corporation situated in Malaysia that mechanical performance of the wooden crossarm declined below their service life of 40 years due to the extreme tropical weather in Malaysia. At present, composite crossarm made of glass fibre reinforced polymer composite were introduced as substitute in the 132 kV TL tower. However, the research findings lack of information on creep life estimation for the full-scale crossarm. Hence, a new test rig has to be developed to cater the testing operation using the uniaxial tension creep test. The primary objective of this review is to provide an overview of the creep theory and the existing creep testing methodology.

References

Khalid, K., Kean, L. S., Cheong, N. K., Sahri, H., and Aziz, S. A. 2004. Development of Ultrasonic and Microwave Techniques for Detection of Decay in Wooden Cross-arms. I16th WCNDT 2004 - World Conf. NDT. Montreal, Canada. 2-4.

Liew, A. C. 1993. Assessment of the Lightning Performance of Quadruple Circuit Transmission Lines with Steel and Wooden Crossarms. Electr Power Syst Res. 27(2): 91-97.

Khalid, K., Sahri, M. H., Ng, K. K., and Fuad, S. A. 2001. Microwave Reflection Technique for Determination of Density, Moisture and Stage of Decay in Wood. Proc. 4th Int. Conf. EM Wave Interact. with Water Moist Subst. Weimar Germany. 79-87

Nikhil, T., Chandrahas, T., Chaitanya, C., Sagar, I., and Sabareesh, G. R. 2016. Design and Development of a Test-Rig for Determining Vibration Characteristics of a Beam. Procedia Eng. 144: 312-320.

DOI: http://dx.doi.org/10.1016/j.proeng.2016.05.138.

Berk, R. W. 2000. Tenaga Nasional Berhad Transmission Line Design Manual. Tennessee: Goodlettsville Inc.

Selvaraj, M., Kulkarni, S. M., and Rameshbabu, R. 2014. Performance Analysis of an Overhead Power Transmission Line Tower Using Polymer Composite Material. Procedia Mater Sci. 5: 1340-1348.

DOI: http://dx.doi.org/10.1016/j.mspro.2014.07.451.

Yeh, H. Y., and Yang, S. C. 1997. Building of a Composite Transmission Tower. J Reinf Plast Compos. 16(5): 414-424.

DOI: http://dx.doi.org/10.1177/073168449701600502.

Moutee, M., Fafard, M., Fortin, Y., and Laghdir, A. 2005. Modeling the Creep Behavior of Wood Cantilever Loaded at Free End During Drying. Wood Fiber Sci. 37(3): 521-534.

Zhang, Z., Yang, J. L., and Friedrich, K. 2004. Creep Resistant Polymeric Nanocomposites. Polymer (Guildf). 45(10): 3481-3485.

DOI: http://dx.doi.org/10.1016/j.polymer.2004.03.004.

Hunt, J. F., Zhang, H., and Huang, Y. 2015. Analysis of Cantilever-beam Bending Stress Relaxation Properties of Thin Wood Composites. BioResources. 10(2): 3131-3145.

DOI: http://dx.doi.org/10.15376/biores.10.2.3131-3145.

Engineering Department of TNB Transmission Division. 2013. Investigation Report on Wooden Crossarm Failure at 132 kV KKSRPPAN L2.

Magimay, F. 1977. Lightning Performance of N.E.B.’s 275 kV Transmission Line. J Inst Eng Malaysia. 23: 45-54.

Selvaraj, M., Kulkarni, S., and Babu, R. R. 2013. Analysis and Experimental Testing of a Built-up Composite Cross Arm in a Transmission Line Tower for Mechanical Performance. Compos Struct. 96: 1-7.

DOI: http://dx.doi.org/10.1016/j.compstruct.2012.10.013.

Chang, F. C., Lam, F., and Kadla, J. F. 2013. Using Master Curves Based on Time-temperature Superposition Principle to Predict Creep Strains of Wood-Plastic Composites. Wood Sci Technol. 47(3): 571-584.

DOI: http://dx.doi.org/10.1007/s00226-012-0518-3.

Loni, S., Stefanou, I., and Valvo, P. S. 2013. Experimental Study on the Creep Behavior of GFRP Pultruded Beams. AIMETA 2013--XXI Congr. Naz. dell Associazione Ital. di Mecc. Teor. e Appl. 1-10

Jaafar, C. N. A., Rizal, M. A. M., and Zainol, I. 2018. Effect of Kenaf Alkalization Treatment on Morphological and Mechanical Properties of Epoxy/Silica/Kenaf Composite. Int J Eng Technol. 7: 258-263.

DOI: http://dx.doi.org/10.14419/ijet.v7i4.35.22743.

Jaafar, C. N. A., Zainol, I., Rizal, M. A. M., and Sultan, U. P. 2018. Preparation and Characterisation of Epoxy/Silica/Kenaf Composite using Hand Lay-up Method. I27th Sci. Conf. Microsc. Soc. Malaysia (27th SCMSM 2018). Melaka, Malaysia. 2-6.

Ashraf, W., Ishak, M. R., Zuhri, M. Y. M., Yidris, N., Yaacob, A. M. B., and Asyraf, M. R. M. 2019. Investigation of Different Facesheet Materials on Compression Properties of Honeycomb Sandwich Composite. Semin. Enau Kebangs. Bahau, Negeri Sembilan, Malaysia. 129-132.

Kaboorani, A., Blanchet, P., and Laghdir, A. 2013. A Rapid Method to Assess Viscoelastic and Mechanosorptive Creep in Wood. Wood Fiber Sci. 45(4): 1-13.

Segovia, F., Blanchet, P., Laghdir, A., and Cloutier, A. 2013. Mechanical Behaviour of Sugar Maple in Cantilever Bending under Constant and Variable Relative Humidity Conditions. Int Wood Prod J. 4(4): 225-231.

DOI: http://dx.doi.org/10.1179/2042645312y.0000000024.

Mancusi, G., Spadea, S., and Berardi, V. P. 2013. Experimental Analysis on the Time-dependent Bonding of FRP Laminates under Sustained Loads. Compos Part B Eng. 46: 116-122.

DOI: http://dx.doi.org/10.1016/j.compositesb.2012.10.007.

Pérez, C. J., Alvarez, V. A., and Vázquez, A. 2008. Creep Behaviour of Layered Silicate/Starch-Polycaprolactone Blends Nanocomposites. Mater Sci Eng A. 480(1-2): 259-265. DOI: http://dx.doi.org/10.1016/j.msea.2007.07.031.

Anand, A., Banerjee, P., Prusty, R. K., and Chandra Ray, B. 2018. Lifetime Prediction of Nano-silica based Glass Fibre/Epoxy composite by Time Temperature Superposition Principle. IOP Conf Ser Mater Sci Eng.

DOI: http://dx.doi.org/10.1088/1757-899X/338/1/012020.

Kumar Ghosh, S., Prusty, R. K., Rathore, D. K., and Ray, B. C. 2017. Creep Behaviour of Graphite Oxide Nanoplates Embedded Glass Fiber/Epoxy Composites: Emphasizing the Role of Temperature and Stress. Compos Part A Appl Sci Manuf. 102: 166-177.

DOI: http://dx.doi.org/10.1016/j.compositesa.2017.08.001.

Sun, N., and Frazier, C. E. 2007. Time/temperature Equivalence in the Dry Wood Creep Response. Holzforschung. 61(6): 702-706.

DOI: http://dx.doi.org/10.1515/HF.2007.114.

Taniguchi, Y., Ando, K., and Yamamoto, H. 2010. Determination of Three-dimensional Viscoelastic Compliance in Wood by Tensile Creep Test. J Wood Sci. 56(1): 82-84.

DOI: http://dx.doi.org/10.1007/s10086-009-1069-6.

Cyras, V. P., Martucci, J. F., Iannace, S., and Vazquez, A. 2002. Influence of the Fiber Content and the Processing Conditions on the Flexural Creep Behavior of Sisal-PCL-starch Composites. J Thermoplast Compos Mater. 15(3): 253-265.

DOI: http://dx.doi.org/10.1177/0892705702015003454.

Sá, M. F., Gomes, A. M., Correia, J. R., and Silvestre, N. 2011. Creep Behavior of Pultruded GFRP Elements - Part 1: Literature Review and Experimental Study. Compos Struct. 93(10): 2450-2459.

DOI: http://dx.doi.org/10.1016/j.compstruct.2011.04.013.

Hao, A., Chen, Y., and Chen, J. Y. 2014. Creep and Recovery Behavior of Kenaf/polypropylene Nonwoven Composites. J Appl Polym Sci. 131(17): 8864-8874.

DOI: http://dx.doi.org/10.1002/app.40726.

Izer, A., and Bárány, T. 2010. Effect of Consolidation on the Flexural Creep Behaviour of All-polypropylene Composite. Express Polym Lett. 4(4): 210-216.

DOI: http://dx.doi.org/10.3144/expresspolymlett.2010.27.

Hyde, T. H., and Sun, W. 2009. A Novel, High-sensitivity, Small Specimen Creep Test. J Strain Anal Eng Des. 44(3): 171-185.

DOI: http://dx.doi.org/10.1243/03093247JSA502.

Lim, B. S., Lee, S. Y., Yang, H. S., Kim, H. J., Jeong, C. S., and Lee, J. N. 2004. Creep Behavior and Manufacturing Parameters of Wood Flour Filled Polypropylene Composites. Compos Struct. 65(3-4): 459-469.

DOI: http://dx.doi.org/10.1016/j.compstruct.2003.12.007.

Ponsot, B., Valentin, D., and Bunsell, A. R. 1989. The Effects of Time, Temperature and Stress on the Long-term Behaviour of CFRP. Compos Sci Technol. 35(1): 75-94.

DOI: http://dx.doi.org/10.1016/0266-3538(89)90071-7.

Bueno, B. S., Costanzi, M. A., and Zornberg, J. G. 2005. Conventional and Accelerated Creep Tests on Nonwoven Needle-punched Geotextiles. Geosynth Int. 12(6): 276-287.

DOI: http://dx.doi.org/10.1680/gein.2005.12.6.276.

Hadid, M., Guerira, B., Bahri, M., and Zouani, K. 2014. The Creep Master Curve Construction for the Polyamide 6 by the Stepped Isostress Method. Mater Res Innov. 18(sup6): S6-336-S6-339.

DOI:http://dx.doi.org/10.1179/1432891714z.0000000001022.

Peng, H., Jiang, J., Lu, J., and Cao, J. 2017. Application of Time–temperature Superposition Principle to Chinese fir Orthotropic Creep. J Wood Sci. 63(5): 455-463.

DOI: http://dx.doi.org/10.1007/s10086-017-1635-2.

Alvarez, V. A., Kenny, J. M., and Vázquez, A. 2004. Creep Behavior of Biocomposites Based on Sisal Fiber Reinforced Cellulose Derivatives/Starch Blends. Polym Compos. 25(3): 280-288. DOI: http://dx.doi.org/10.1002/pc.20022.

Zhu, S. P., and Huang, H. Z. 2010. A Generalized Frequency Separation-strain Energy Damage Function Model for Low Cycle Fatigue-creep Life Prediction. Fatigue Fract Eng Mater Struct. 33(4): 227-237.

Bernstein, B., Kearsley, E. A., and Zapas, L. J. 1963. A Study of Stress Relaxation with Finite Strain. Trans Soc Rheol. 7(1): 391-410.

Zhuang, W. Z., and Halford, G. R. 2001. Investigation of Residual Stress Relaxation under Cyclic Load. Int J Fatigue. 23: 31-37.

Schwarzl, F., and Staverman, A. J. 1952. Time-temperature Dependence of Linear Viscoelastic Behavior. J Appl Phys. 23(8): 838-843.

Zhuang, F. K., Tu, S. T., Zhou, G. Y., and Wang, Q. Q. 2015. A Small Cantilever Beam Test for Determination of Creep Properties of Materials. Fatigue Fract Eng Mater Struct. 38: 257-267.

DOI: http://dx.doi.org/10.1111/ffe.12225.

Feng, S. H., and Zhao, Y. K. 2010. The Summary of Wood Stress Relaxation Properties and Its Influencing Factors. WoodProc Mach. 25(3): 39-40.

Whitney, J. M., Browning, C. E., and Hoogsteden, W. 1982. A Double Cantilever Beam Test for Characterizing Mode I Delamination of Composite Materials. J Reinf Plast Compos. 1(4): 297-313.

Liu, H. W. 2004. Mechanics of Materials. Beijing: China Machine Press

Ma, X., Jiang, Z., Tong, L., Wmang, G., and Cheng, H. 2015. Development of Creep Models for Glued Laminated Bamboo Using the Time-temperature Superposition Principle. Wood Fiber Sci. 47(2): 1-6.

Chang, E., and Dover, W. D. 2001. Characteristic Parameters for Stress Distribution along the Intersection of Tubular Y, T, X and DT Joints. J Strain Anal Eng Des. 36(3): 323-339.

DOI: http://dx.doi.org/10.1243/0309324011514502.

Findley, W. N. 1944. Creep Characteristics of Plastics. Symp Plast ASTM. 118-134.

Narayana, V. J. S., Balasubramaniam, K., and Prakash, R. V. 2010. Detection and Prediction of Creep-damage of Copper Using Nonlinear Acoustic Techniques. AIP Conf Proc. 1211: 1410-1417.

DOI: http://dx.doi.org/10.1063/1.3362233.

Gamalath, S. S. 1991. Long Term Creep Modelling of Wood Using Time Temperature Superposition Principle. Virginia Polytechnic Institute and State University

Slocumb, R. C. Demeny, D. D. and Christopher, B. R. 1986. Creep Characteristics of Drainage Nets. Proc. 9th Annu. Madison Waste Conf. 658-671.

Lawrence, C. A. 1987. Selected Design Considerations for a Synthetic Landfill or Waste Impoundment. Drexel University, Philadelphia, USA.

Jarousseau, C. and Gallo, R. 2004. Drainage Geocomposites: Relation between Water Flow Capacity and Thickness in the Long Term. Proc. 3rd EuroGeo Conf. 349-354

Tajvidi, M., Falk, R. H., and Hermanson, J. C. 2005. Time-temperature Superposition Principle Applied to a Kenaf-Fiber/High-density Polyethylene Composite. J Appl Polym Sci. 97(5): 1995-2004.

DOI: http://dx.doi.org/10.1002/app.21648.

Li, R. 2000. Time-temperature Superposition Method for Glass Transition Temperature of Plastic Materials. Mater Sci Eng A. 278(1-2): 36-45.

DOI: http://dx.doi.org/10.1016/S0921-5093(99)00602-4.

Findley, W. N., Lai, J. S., Onaran, K., and Christensen, R. M. 2010. Creep and Relaxation of Nonlinear Viscoelastic Materials with an Introduction to Linear Viscoelasticity. J Appl Mech. 44(2): 364.

DOI: http://dx.doi.org/10.1115/1.3424077.

Ravi, S., Laha, K., Sakthy, S., Mathew, M. D., and Jayakumar, T. 2014. Design of Creep Machine and Creep Specimen Chamber for Carrying Out Creep Tests in Flowing Liquid Sodium. Nucl Eng Des. 267: 1-9.

DOI: http://dx.doi.org/10.1016/j.nucengdes.2013.10.020.

Yen, S. C., and Williamson, F. L. 1990. Accelerated Characterization of Creep Response of an Off-axis Composite Material. Compos Sci Technol. 38(2): 103-118.

DOI: http://dx.doi.org/10.1016/0266-3538(90)90001-L.

Grishaber, R. B., Lu, R. H., Farkas, D. M., and Mukherjee, A. K. 1997. A Novel Computer Controlled Constant Stress Lever Arm Creep Testing Machine. Rev Sci Instrum. 68(7): 2812-2817.

DOI: http://dx.doi.org/10.1063/1.1148200.

Smith, I. Murray, D. and Day, M. F. 1965. Creep Testing Equipment-design Features and Control. PIME Conf. Proc. 303-307.

Carroll, D. F., Wiederhorn, S. M., and Roberts, D. E. 1989. Technique for Tensile Creep Testing of Ceramics. J Am Ceram Soc. 72(9): 1610-1614.

Østergaard, L., Lange, D. A., Altoubat, S. A., and Stang, H. 2001. Tensile Basic Creep of Early-age Concrete under Constant Load. Cem Concr Res. 31(12): 1895-1899.

Jorik, S., Lion, A., and Johlitz, M. 2019. Design of the Novel Tensile Creep Experimental Setup, Characterisation and Description of the Long-term Creep Performance of Polycarbonate. Polym Test. 75: 151-158.

Brunbauer, S. 2010. Design and Development of a Testing Machine for Compressive Creep Tests on Polymers at Elevated Temperatures. Institute of Materials Science and Testing of Polymers. Leobon, Austria.

Loni, S. 2013. Experimental and Theoretical Study on the Creep Behavior of GFRP Pultruded Beams. University of Pisa, Pisa, Italy.

European Standards. 1998. Fibre-reinforced Plastic Composites—Determination of Flexural Properties. Br Stand.

DOI: http://dx.doi.org/10.1520/E0872-82R13.2.

Barr, B. I. G., Lee, M. K., Barragán, B., Dupont, D., Gettu, R., Olesen, J. F., Stang, H., and Vandewalle, L. 2003. Round-robin Analysis of the RILEM TC 162-TDF Uni-axial Tensile Test: Part 2. Mater Struct Constr. 36(258): 275-280.

DOI: http://dx.doi.org/10.1617/13892.

Kusterle, W. 2017. Flexural Creep Tests on Beams—8 Years of Experience with Steel and Synthetic Fibres. RILEM Bookseries. 14: 27-39.

DOI: http://dx.doi.org/10.1007/978-94-024-1001-3_3.

Zhao, G., di Prisco, M., and Vandewalle, L. 2015. Experimental Investigation on Uniaxial Tensile Creep Behavior of Cracked Steel Fiber Reinforced Concrete. Mater Struct Constr. 48(10): 3173-3185.

DOI: http://dx.doi.org/10.1617/s11527-014-0389-1.

Buratti, N., and Mazzotti, C. 2016. Experimental Tests on the Long-term Behaviour of SFRC and MSFRC in Bending and Direct Tension. Proc. 9th Rilem Int. Symp. Fiber Reinf. Concr.

Buratti, N., and Mazzotti, C. 2016. Uniaxial Tension Tests on Macrosynthetic Fibre Reinforced Concretes. Proc. 9th Rilem Int. Symp. Fiber Reinf. Concr.

Nieuwoudt, P. D., and Boshoff, W. P. 2016. The Time-Dependant Pull-out Behaviour of Hooked Steel Fibres.

Daviau-Desnoyers, D., Charron, J.-P., Massicotte, B., Rossi, P., and Tailhan, J.-L. 2017. Creep Behavior of a SFRC Under Service and Ultimate Bending Loads. Creep Behav. Crack. Sect. Fibre Reinf. Concr. Springer. 223-235.

Buratti, N., and Mazzotti, C. 2017. Creep Testing Methodologies and Results Interpretation. RILEM Bookseries.13-24.

DOI: http://dx.doi.org/10.1007/978-94-024-1001-3_2.

Babafemi, A. J., and Boshoff, W. P. 2016. Testing and Modelling the Creep of Cracked Macro-Synthetic Fibre Reinforced Concrete (MSFRC) under Flexural Loading. Mater Struct Constr. 49(10): 4389-4400.

DOI: http://dx.doi.org/10.1617/s11527-016-0795-7.

Mier, J. G. M. Van, and Vliet, M. R. A. Van. 2002. Uniaxial Tension Test for the Determination of Fracture Parameters of Concrete : State of the Art. Eng Fract Mech. 69: 235-247.

Plizzari, G. A., Cangiano, S., and Alleruzzo, S. 1997. The Fatigue Behaviour of Cracked Concrete. Fatigue Fract Eng Mater Struct. 20(8): 1195-1206.

DOI: http://dx.doi.org/10.1111/j.1460-2695.1997.tb00323.x.

Li, Z., Li, F., Chang, T. Y. P., and Mai, Y. W. 1998. Uniaxial Tensile Behavior of Concrete Reinforced with Randomly Distributed Short Fibers. ACI Mater J. 95(5): 564-574.

Barragán, B. E., Gettu, R., MartıÌn, M. A., and Zerbino, R. L. 2001. Uni-axial Tension Test for Steel Fibre Reinforced Concrete. Mater Struct. 34(1): 3-6.

DOI: http://dx.doi.org/10.1007/BF02482193.

Zerbino, R., Monetti, D. H., and Giaccio, G. 2016. Creep Behaviour of Cracked Steel and Macro-synthetic Fibre Reinforced Concrete. Mater Struct Constr. 49(8): 3397-3410.

DOI: http://dx.doi.org/10.1617/s11527-015-0727-y.

ASTM E21. 2017. Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials.

ASTM E151. 2011. Standard Test Methods for Tensile, Compressive, and Flexural Creep and Creep- Rupture of Plastics.

Downloads

Published

2019-06-25

Issue

Section

Science and Engineering

How to Cite

FUNDAMENTALS OF CREEP, TESTING METHODS AND DEVELOPMENT OF TEST RIG FOR THE FULL-SCALE CROSSARM: A REVIEW. (2019). Jurnal Teknologi (Sciences & Engineering), 81(4). https://doi.org/10.11113/jt.v81.13402