FUNCTIONAL ANALYSIS OF THE PERSICARIA MINOR SESQUITERPENE SYNTHASE GENE PROMOTER IN TRANSGENIC ARABIDOPSIS THALIANA

Authors

  • Aimi Farehah Omar Center of Biotechnology and Functional Foods, Faculty Science and Technology, UKM, 43600, Bangi, Selangor, Malaysia
  • Ismanizan Ismail Institute of Systems Biology, UKM, 43600, Bangi, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v81.13460

Keywords:

Promoter, PmSS, cis-regulatory element, β-glucuronidase, GUS activity

Abstract

Sesquiterpene synthase is an enzyme involved in sesquiterpene biosynthesis which catalyzed sesquiterpene formation from farnesyl diphosphate (FDP). In this research, the sesquiterpene synthase promoter (PmSS) was isolated from Persicaria minor (P.minor) to identify the functional region of the promoter and possible cis - regulatory element involved in the regulation of sesquiterpene synthase gene. Various putative cis - regulatory element involved in environmental stress and hormones were identified on PmSS promoter. The PmSS promoter and three series of deletion promoter were fused to β-glucuronidase (gus) gene and transformed into Arabidopsis thaliana. This study showed PmSS promoter was regulated in a developmental -specific manner and response to wounding, drought, heat, abscisic acid (ABA) and methyl jasmonate (MeJa) treatment. The results revealed the existence of cis regulatory elements that control the regulation of promoter activity in a developmental specific manner at -1758 to -1078 promoter sequences. The presence of cis-element acting as a repressor is expected to be present at the promoter between -1540 to -1078 bp. The region from -1078 to -855 was critical for maximal PmSS promoter activity. Deletion of promoter region from -1758 to -855 induced regulation of promoter in an organ-specific manner. Drought stress treatment did not induced GUS activity in deleted ABRE motif construct, suggested that ABRE motif is essential cis element during drought stress. 

 

Author Biographies

  • Aimi Farehah Omar, Center of Biotechnology and Functional Foods, Faculty Science and Technology, UKM, 43600, Bangi, Selangor, Malaysia

    Postgraduate Student,

    Center of Biotechnology,

    Faculty of Science and Technology,
    Universiti Kebangsaan Malaysia

  • Ismanizan Ismail, Institute of Systems Biology, UKM, 43600, Bangi, Selangor, Malaysia

    Professor Dr. Ismanizan Ismail

    Institute of Systems Biology, UKM, 43600, Bangi, Selangor, Malaysia

References

Dudareva, N., Negre, F., Nagegowda, D. A. and Orlova, I. 2007. Plant Volatiles: Recent Advances and Future Perspectives. Critical Reviews in Plant Sciences. 25(5): 417-440. DOI: https://doi.org/10.1080/07352680600899973.

Nagegowda, D. A. 2010. Plant Volatile Terpenoid Metabolism Biosynthetic Genes. Transcriptional Regulation and Subcellular Compartmentation. 584: 2965-2973.

Buckle, J. 2015. Basic Plant Taxonomy, Basic Essential Oil Chemistry, Extraction, Biosynthesis, and Analysis. Clinical Aromatherapy. 37-72.

DOI: https://doi.org/10.1016/B978-0-7020-5440-2.00003-6.

Mazid, M., Khan, T. A. and Mohammad, F. 2011. Role of Secondary Metabolites in Defense Mechanisms of Plants. Biology and Medicine. 3(2): 232-249.

Awouafack, M. D., Tane, P., Kuete, V. and Eloff, J. N. 2013. Sesquiterpenes from the Medicinal Plants of Africa. Medicinal Plant Research in Africa: Pharmacology and Chemistry. 33-103.

Göpfert, J. C., Macnevin, G., Ro, D. and Spring, O. 2009. Identification, Functional Characterization and Developmental Regulation of Sesquiterpene Synthases from Sunflower Capitate Glandular Trichomes. BMC Plant Biology. 18: 1-18.

Lockwood, G. B. 2001. Techniques for Gas Chromatography of Volatile Terpenoids from a Range of Matrices. Journal of Chromatography A. 936: 23-31.

Chen, F., Tholl, D., Auria, J. C. D., Farooq, A., Pichersky, E. and Gershenzon, J. 2003. Biosynthesis and Emission of Terpenoid Volatiles from Arabidopsis Flowers. The Plant Cell. 15: 481-494. DOI: https://doi.org/10.1105/tpc.007989.

Gouinguene, S., Degen, T. and Turlings, T. C. J. 2001. Variability in Herbivore-induced Odour Emissions qmong Maize Cultivars and Their Wild Ancestors (Teosinte) Variability in Herbivore-induced Odour Emissions Among Maize Cultivars and Their Wild Ancestors (Teosinte). Chemoecology. 11(1): 9-16.

DOI: https://doi.org/10.1007/PL00001832.

Kollner, T. G., Held, M., Lenk, C., Hiltpold, I., Turlings, T. C. J., Gershenzon, J. and Degenhardt, J. 2008. A Maize (E)- β-Caryophyllene Synthase Implicated in Indirect Defense Responses against Herbivores is Not Expressed in Most American Maize Varieties. The Plant Cell Online. 20(2): 482-494.

DOI: https://doi.org/10.1105/tpc.107.051672.

Huang, M., Sanchez-Moreiras, A.M., Abel, C., Sohrabi, R., Lee, S., Gershenzon, J. and Tholl, D. 2012. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)--caryophyllene, is a defense against a bacterial pathogen. New Phytologist 193(4): 997-1008.

DOI: https://doi.org/10.1111/j.1469-8137.2011.04001.

Picaud, S., Olsson, M.E., Brodelius, M. and Brodelius, P.E. 2006. Cloning, Expression, Purification and Characterization of Recombinant (+) -Germacrene D Synthase from Zingiber Officinale. Archives of Biochemistry and Biophysic. 452: 17-28.

DOI: https://doi.org/10.1016/j.abb.2006.06.007.

Lange, B. M., Rujan, T., Martin, W. and Croteau, R. 2000. Isoprenoid Biosynthesis: The Evolution of Two Ancient and Distinct Pathways across Genomes. Proceedings of the National Academy of Sciences. 97(24): 13172-13177.

DOI: https://doi.org/10.1073/pnas.240454797

Hernandez-Garcia, C. M. and Finer, J. J. 2014. Identification and Validation of Promoters and cis-acting Regulatory Elements. Plant Science. 217-218: 109-119.

DOI: https://doi.org/10.1016/j.plantsci.2013.12.007.

Zou, C., Sun, K., Mackaluso, J. D., Seddon, A. E., Jin, R. & Thomashow, M. F. 2011. Cis -regulatory Code of Stress-Responsive Transcription in Arabidopsis Thaliana. Proceedings of the National Academy of Sciences of the United States of America 108. (2011): 14992-14997).

DOI: https://doi.org/10.1073/pnas.1103202108.

Ismail, I., Abdul Rahman, N., Fei, C. K., Zainal, Z., Sidik, N. M., and Che Mohd Zain, C. R. 2009. Functional Analysis of the Elaeis Oleifera Sesquiterpene Synthase Promoter Reveal Non-Specific Tissue Expression and Activation under Stress Condition. American Journal of Plant Physiology. 4(1): 24-37.

DOI: https://doi.org/10.3923/ajpp.2009.24.37.

Wang, H., Han, J., Kanagarajan, S., Lundgren, A., and Brodelius, P. E. 2013. Studies on the Expression of Sesquiterpene Synthases using Promoter-β-glucuronidase Fusions in Transgenic Artemisia annua L. PLoS One. 8(11): e80643.

DOI: https://doi.org/10.1371/journal.pone.0080643.

Baharum, S. N., Bunawan, H., Ghani, M. A., Wan Aida Wan Mustapha and Noor, N. M. 2010. Analysis of the Chemical Composition of the Essential Oil of Polygonum minus Huds. Using Two-dimensional Gas Chromatography-time-of-flight Mass Spectrometry (GC-TOF MS). Molecules. 15(10): 7006-7015.

DOI: https://doi.org/10.3390/molecules15107006.

Gor, M. C., Ismail, I., Mustapha, W. A. W., Zainal, Z., Noor, N. M., Othman, R. and Hussein, Z. A. M. 2011. Identification of cDNAs for Jasmonic Acid-responsive Genes in Polygonum Minus Roots by Suppression Subtractive Hybridization. Acta Physiologiae Plantarum. 33(2): 283-294.

DOI: https://doi.org/10.1007/s11738-010-0546-2.

Christapher, P. V., Parasuraman, S., Christina, J. M. A., Asmawi, M. Z. and Vikneswaran, M. 2014. Review on Polygonum minus. Huds, a Commonly used Food Additive in Southeast Asia. Pharmacognosy Research. 7(1): 1-6.

DOI: https://doi.org/10.4103/0974-8490.147125.

Kiat, C. J., Ashraf, M. F., Naeem-Ul-Hassan, M., Che Mohd Zain, C. R., Zainal, Z. and Ismail, I. 2016. Molecular Cloning, Characterization and Expression Pattern Analysis of a Jasmonic Acid Responsive Sesquiterpene Synthase Gene from Persicaria minor. Plant OMICS. 9(5): 360-368.

DOI: https://doi.org/10.21475/poj.09.05.16.pne271.

Lescot, M., Dehais, P., Thijs, G., Marchal, K., Moreau, Y.,Van de Peer, Y., Rouze, P and Rombauts, S. 2002. PlantCARE, Adatabase of Plant cis-acting Regulatory Elements and a Portal to Tools for in Silico Analysis of Promoter Sequences. Nucleic Acids Research. 30: 325-327.

DOI: https://doi.org/10.1093/nar/30.1.325.

Higo, K., Ugawa, Y., Iwamoto, M. and Korenaga, T. 1999. Plant cis Acting Regulatory DNA Elements (PLACE) Database. Nucleic Acid Research. 27: 297-300,

DOI: https://doi.org/10.1093/nar/27.1.297.

Clough, S. J and Bent, A. F. 1998. Floral Dip: A Simplified Method for Agrobacterium-mediated Transformation of Arabidopsis thaliana. Plant Journal. 16: 735-743.

DOI: https://doi.org/10.1046/j.1365-313x.1998.00343.x.

Eun, C. H., Kim, S. U. and Kim, I. J. 2015. The Promoter from the Citrus unshiu Carotenoid Isomerase Gene Directs Differential GUS Expression in Transgenic Arabidopsis. Molecular Breeding. 35(5).

DOI: https://doi.org/10.1007/s11032-015-0310-9.

Kim, I. J., Lee, J., Han, J. A. and Kim, C. S and Hur, Y. 2011. Citrus Lea Promoter Confers Fruit-preferential and Stress-inducible Gene Expression in Arabidopsis. Canadian Journal of Plant Science. 91: 459-466.

DOI: https://doi.org/10.4141/cjps10137.

Jefferson, R. A. 1987. Assaying Chimeric Genes in Plants: the GUS Gene Fusion System. Plant Molecular Biology. 5: 387-405.

Simpson, S. D., Nakashima, K., Narusaka, Y., Seki, M., Shinozaki, K and Yamaguchi-Shinozaki, K. 2003. Two Different Novel cis Acting Elements of erd1, a clpA Homologous Arabidopsis Gene Function in Induction by Dehydration Stress and Dark Induced Senescence. Plant Jounal. 33:259–270

DOI: https://doi.org/10.1046/j.1365-313X.2003.01624.x.

Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D and Shinozaki, K. 1997.Role of Arabidopsis MYC and MYB Homologs in Drought- and Abscisic Acid-regulated Gene Expression. Plant Cell. 9: 1859-1868.

https://doi.org/10.1105/tpc.9.10.1859.

Shinozaki, K., & Yamaguchi-Shinozaki, K. 2007. Gene Networks Involved in Drought Stress Response and Tolerance. Journal of Experimental Botany. 58(2): 221-227.

DOI: https://doi.org/10.1093/jxb/erl164.

Park, H. C., Kim, M. L., Kang, Y. H., Jeon, J. M., Yoo, J. H., Kim, M. C., Park, C. Y., Jeong, J. C., Moon, B. C., Lee, J. H., Yoon, H. W., Lee, S.-H., Chung, W. S., Lim, C. O., Lee, S. Y., Hong, J. C. and Cho, M. J. 2004. Pathogen- and NaCl-Induced Expression of the SCaM-4 Promoter Is Mediated in Part by a GT-1 Box that Interacts with a GT-1-Like Transcription Factor. Plant Physiology. 135(4): 2150 LP-2161.

Hoballah, M. E., Degen, T., Bergvinson, D., Savidan, A., Tamo, C. and Turlings, T. C. J. 2004. Occurrence and Direct Control Potential of Parasitoids and Predators of the Fall Armyworm (Lepidoptera: Noctuidae) on Maize in the Subtropical. Agricultural and Forest Entomology. 6(1): 83-88.

DOI: https://doi.org/10.1111/j.1461-9555.2004.00207.x.

Schnee, C., Kollner, T. G., Held, M., Turlings, T. C. J., Gershenzon, J. and Degenhardt, J. 2006. The Products of a Single Maize Sesquiterpene Synthase form a Volatile Defense Signal that Attracts Natural Enemies of Maize Herbivores. Proceedings of the National Academy of Sciences. Neuchatel, Switzerland. 14 September 2005. 103(4): 1129-1134.

DOI: https://doi.org/10.1073/pnas.0508027103.

Deb, A. and Kundu, S. 2015. Deciphering Cis-Regulatory Element Mediated Combinatorial Regulation in Rice under Blast Infected Condition. PLOS ONE. 10(9).

DOI: https://doi.org/10.1371/journal.pone.0137295.

Nishiuchi, T., Shinshi, Hand Suzuki, K. 2004. Rapid and Transient Activation of Transcription of the ERF3 Gene by Wounding in Tobacco Leaves: Possible Involvement of NtWRKYs and Autorepression. Journal of Biological Chemistry. 279: 55355-55361.

DOI: https://doi.org/10.1074/jbc.M409674200.

Downloads

Published

2019-06-25

Issue

Section

Science and Engineering

How to Cite

FUNCTIONAL ANALYSIS OF THE PERSICARIA MINOR SESQUITERPENE SYNTHASE GENE PROMOTER IN TRANSGENIC ARABIDOPSIS THALIANA. (2019). Jurnal Teknologi, 81(4). https://doi.org/10.11113/jt.v81.13460