ISOLATION AND IDENTIFICATION OF MICROALGAE FROM HIGH NITRATE LANDFILL LEACHATE

Authors

  • Norazela Nordin Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
  • Syakirah Samsudin Department of Biology Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim Perak
  • Norjan Yusof Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris 35900 Tanjong Malim Perak

DOI:

https://doi.org/10.11113/jt.v81.13581

Keywords:

Microalgae, Chlorella vulgaris, Tetradesmus obliquus, Microalgae Biomass

Abstract

This study aims to isolate and identify microalgae capable of growing in high nitrate (N-NO3-) landfill leachate. Source of isolation was collected from a landfill leachate treatment plant and identified according to morphological characteristics and analysis of partial 18S and 28S rRNA genes. The isolates, identified as Chlorella vulgaris UPSI-JRM01 and Tetradesmus obliquus UPSI-JRM02 were capable of growing at high N-NO3- concentration of nitrified landfill leachate, which is up to 1500 mg/L. The biomass productivities of Chlorella vulgaris and Tetradesmus obliquus were 36.28 mg/L/day and 40.49 mg/L/day, with 44% and 37% N-NO3- removal, respectively. The biomass of Chlorella vulgaris and Tetradesmus obliquus consisted of 17.72% and 16.32% lipid and, 21.93% and 25.43% carbohydrate, respectively. The protein contents (>50%) were higher than lipid and carbohydrate contents for both microalgal species. The newly isolated microalgae species will be useful for future applications of high NO3- wastewater treatment and microalgae biomass production.

References

Yusof, N., Hassan, M. A., Phang, L. Y. Tabatabaei, M., Othman, M. R., Mori, M., Wakisaka, M., Sakai, K., & Shirai, Y. 2011. Nitrification of High-strength Ammonium Landfill Leachate with Microbial Community Analysis Using Fluorescence in Situ Hybridization (FISH). Waste Management & Research. 29(6): 602-611. DOI: 10.1177/0734242X10397581.

Yusof, N., Hassan M. A., Phang, L. Y., Tabatabaei, M., Othman, M. R., Mori, M., Wakisaka, M., Sakai, K., & Shirai, Y. 2010. Nitrification of Ammonium-rich Sanitary Landfill Leachate. Waste Management. 30: 100-109. DOI: 10.1016/j.wasman.2009.08.018.

Zhu, L. D., Hiltunen, E., Antila, E., Zhong, J. J., Yuan, Z. H., & Wang, Z. M. 2014. Microalgal Biofuels: Flexible Bioenergies for Sustainable Development. Renew. Sust. Energ. Rev. 30: 1035-1046. DOI: 10.1016/j.rser.2013.11.003.

Taziki, M., Ahmadzadeh, H., & Murry, M.A. 2015. Growth of Chlorella vulgaris in High Concentrations of Nitrate and Nitrite for Wastewater Treatment. Current Biotechnology. 4(4): 441-447. DOI: 10.2174/2211550104666150930204835.

Otondo, A., Kokabian, B., Stuart-Dahl, S., & Gude, V. G. 2018. Energetic Evaluation of Wastewater Treatment Using Microalgae. Chlorella vulgaris. Journal of Environmental Chemical Engineering. 6(2): 3213-3222. DOI: 10.1016/j.jece.2018.04.064.

Parvin, M., Zannat, M., & Habib, M. 2007. Two Important Techniques for Isolation of Microalgae. Asian Fish. Sci. 20: 117-124.

Serra-Maia, R., Bernard, O., Gonzalves, A., et al. 2016. Influence of Temperature on Chlorella vulgaris Growth and Mortality Rates in a Photobioreactor. Algal Res. 18: 352-359. DOI: 10.1016/j.algal.2016.06.016.

Nordin, N., Yusof, N., & Samsudin, S. 2016. Biomass Production of Chlorella sp., Scenedesmus sp., and Oscillatoria sp. in Nitrified Landfill Leachate. Waste and Biomass Valorization. 8(7): 2301-2311. DOI: 10.1007/s12649-016-9709-8.

Taher, H., Al–Zuhair, S., Al–Marzouqi, A. H., Haik, Y., & Farid, M. 2014. Effective Extraction of Microalgae Lipids from Wet Biomass for Biodiesel Production. Biomass Bioenergy. 66: 159-167. DOI: 10.1016/j.biombioe.2014.02.034.

George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, C., Ghosh, T., & Mishra, S. 2014. Effects of Different Media Composition, Light Intensity and Photoperiod on Morphology and Physiology of Freshwater Microalgae Ankistrodesmus falcatus-a Potential Strain for Bio-Fuel production. Bioresource Technology. 171: 367-74. DOI: 10.1016/j.biortech.2014.08.086.

Jia, J., Han, D., Gerken, H. G., Li, Y., Sommerfeld, M., Hu, Q., & Xu, J. 2015. Molecular Mechanisms for Photosynthetic Carbon Partitioning into Storage Neutral Lipids in Nannochloropsis oceanica under Nitrogen-depletion Conditions. Algal Research. 7: 66-77. DOI: 10.1016/j.algal.2014.11.005.

Li, L., Cui, J., Liu, Q., Ding, Y., & Liu, J. 2015. Screening and Phylogenetic Analysis of Lipid-rich Microalgae. Algal Research. 11: 381-386. DOI: 10.1016/j.algal.2015.02.028.

American Public Health Association (APHA). 2005. Standard Methods for the Examination of Water and Wastewater. 21st ed. Washington DC: American Public Health Association.

Ho, S. H., Huang, S. W., Chen, C. Y., Hasunuma, T., Kondo, A., & Chang, J. S. 2013. Characterization and Optimization of Carbohydrate Production from an Indigenous Microalga Chlorella vulgaris FSP-E. Bioresource Technology. 135: 157-165. DOI: 10.1016/j.biortech.2012.10.100.

Talebi, A. F., Tohidfar, M., Tabatabaei, M., et al. 2013. Genetic Manipulation, a Feasible Tool to Enhance Unique Characteristic of Chlorella vulgaris as a Feedstock for Biodiesel Production. Mol. Biol. Rep. 40: 4421-4428. DOI: 10.1007/s11033-013-2532-4.

Rasoul-Amini, S., Ghasemi, Y., Morowvat, M. H., & Mohagheghzadeh, A. 2009. PCR Amplification of 18S rRNA, Single Cell Protein Production and Fatty Acid Evaluation of Some Naturally Isolated Microalgae. Food Chem. 116: 129-136. DOI: 10.1016/j.foodchem.2009.02.025.

Bhola, V., Desikan, R., Santosh, S. K., Subburamu, K., Sanniyasi, E., & Bux, F. 2011. Effects of Parameters Affecting Biomass Yield and Thermal Behaviour of Chlorella vulgaris. J. Biosci. Bioeng. 111(3): 377-382. DOI: 10.1016/j.jbiosc.2010.11.006.

Yi, L., Yuesong, X., Ying, P. Y., Rongqing, Y., Pei, L., Dairong, Q., Yi, C., & Yu, C. 2014. The Biodiversity of Oleaginous Microalgae in Northern Qinghai-Tibet Plateau. Afr. J. Microbiol. Res. 8(1): 66-74. DOI: 10.5897/AJMR12.806.

Mishra, A., Medhi, K., Maheshwari, N., Srivastava, S., & Thakur, I. S. 2018. Biofuel Production and Phycoremediation by Chlorella sp. ISTLA1 Isolated from Landfill Site. Bioresource Technology. 253: 121-129. DOI: 10.1016/j.biortech.2017.12.012.

Roeselers, G, Loosdrecht, M. C. M., & Muyzer, G. 2007. Phototrophic Biofilms and Their Potential Applications. J. Appl. Phycol. 20: 227-235. DOI: 10.1007/s10811-007-9223-2.

Singh, A. & Olsen, S. I. 2011. A Critical Review of Biochemical Conversion, Sustainability and Life Cycle Assessment of Algal Biofuels. Appl. Energy. 88(10): 3548-3555. DOI: 10.1016/j.apenergy.2010.12.012.

De Francisci, D., Su, Y., Iital, A., & Angelidaki, I. 2018. Evaluation of Microalgae Production Coupled with Wastewater Treatment. Environmental Technology (United Kingdom). 39(5): 581-592. DOI: 10.1080/09593330.2017.1308441.

Li, T., Gargouri, M., Feng, J., Park, J. J., Gao, D., Miao, C., Dong, T., Gang, D. R., & Chen, S. 2015. Regulation of Starch and Lipid Accumulation in a Microalga Chlorella sorokiniana. Bioresource Technology. 180: 250-257. DOI: 10.1016/j.biortech.2015.01.005.

Concas, A., Steriti, A., Pisu, M., & Cao, G. 2014. Comprehensive Modeling and Investigation of the Effect of iron on the Growth Rate and Lipid Accumulation of Chlorella Vulgaris Cultured in Batch Photobioreactors. Bioresource Technology. 153: 340-350. DOI: 10.1016/j.biortech.2013.11.085.

Lynch, F., Santana-Sánchez, A., Jämsä, M., Sivonen, K., Aro, E. M., & Allahverdiyeva, Y. 2015. Screening Native Isolates of Cyanobacteria and a Green Alga for Integrated Wastewater Treatment, Biomass Accumulation and Neutral Lipid Production. Algal Res. 11: 411-420. DOI: 10.1016/j.algal.2015.05.015.

Cai, T., Park, S. Y. & Li, Y. 2013. Nutrient Recovery from Wastewater Streams by Microalgae: Status and Prospects. Renew. Sust. Energ.Rev. 19: 360-369. DOI: 10.1016/j.rser.2012.11.03.

Downloads

Published

2019-08-19

Issue

Section

Science and Engineering

How to Cite

ISOLATION AND IDENTIFICATION OF MICROALGAE FROM HIGH NITRATE LANDFILL LEACHATE. (2019). Jurnal Teknologi, 81(5). https://doi.org/10.11113/jt.v81.13581