IN SILICO ANALYSIS AND FUNCTIONAL CHARACTERIZATION OF FHUB, A COMPONENT OF ERWINIA MALLOTIVORA FERRIC HYDROXAMATE UPTAKE SYSTEM

Authors

  • Nor Mustaiqazah Juri Biotechnology & Nanotechnology Research Centre, Malaysian Agricultural Research & Development Institute, 43400 MARDI Head Quarter Serdang, Selangor, Malaysia
  • Aimera Farhana Samsuddin Biotechnology & Nanotechnology Research Centre, Malaysian Agricultural Research & Development Institute, 43400 MARDI Head Quarter Serdang, Selangor, Malaysia School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
  • Abdul Munir Abd Murad School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
  • Amin Asyraf Tamizi Biotechnology & Nanotechnology Research Centre, Malaysian Agricultural Research & Development Institute, 43400 MARDI Head Quarter Serdang, Selangor, Malaysia
  • Mohd Azhar Hassan Horticulture Research Centre, Malaysian Agricultural Research & Development Institute, 43400 MARDI Head Quarter Serdang, Selangor, Malaysia
  • Norliza Abu Bakar Biotechnology & Nanotechnology Research Centre, Malaysian Agricultural Research & Development Institute, 43400 MARDI Head Quarter Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v82.13635

Keywords:

Dieback disease, Erwinia mallotivora, fhuB, papaya, iron uptake

Abstract

Iron is a critical element for bacterial growth as most pathogenic bacteria relies on their host for iron supply. However, iron sources are bounded to the host iron binding protein and specific iron acquisition mechanism is required to chelate and transport the iron to the bacteria. Ferric hydroxamate uptake system or fhu is one of the transport systems that import iron in the form of ferric hydroxamate/ ferrichrome from the extracellular environment into the bacterial cytosol. In this present study, a detailed in silico structural analysis was conducted on an important component of fhu transport member from Erwinia mallotivora named as fhuB. This provide us the structural properties of the protein which includes the domain and 3D model, phylogenetic analysis and the membrane topology. For functional analysis, a knockout mutant of fhuB gene strain was generated to evaluate the effect of silencing this gene during E. mallotivora infection in papaya. When compared to the wild E. mallotivora strain, fhuB mutant strain of E. mallotivora loss its virulence in causing dieback disease symptom in papaya. The result of this study has revealed the significant role of iron acquisition and metabolism during E. mallotivora pathogenesis. This highlights fhuB role and importance as the target gene; to inhibit iron uptake in E. mallotivora for future study and as a part of future consideration for dieback disease management strategy in papaya.

Author Biography

  • Nor Mustaiqazah Juri, Biotechnology & Nanotechnology Research Centre, Malaysian Agricultural Research & Development Institute, 43400 MARDI Head Quarter Serdang, Selangor, Malaysia
    Biotechnology & Nanotechnology Research Centre, Malaysian Agricultural Research & Development Institute, 43400 MARDI Head Quarter Serdang, Selangor

References

Chan, Y. K., and Baharuddin, A. G. 2010. Rejuvenating the flagging papaya industry in Malaysia: The role of MAFC. Acta Hortic. 851: 37-40. DOI: 10.17660/ActaHortic.2010.851.2.

Redzuan, R. A., N. Abu Bakar, L. Rozano, R. Badrun, N. Mat Amin, and M. F. Mohd Raih. 2014. Draft genome sequence of Erwinia mallotivora BT-MARDI, causative agent of papaya dieback disease. Genome Announc. 2(3): e00375-14. DOI:10.1128/genomeA.00375-14.

Chander, A. M., R. Kochhar, D. K. Dhawan, S. K. Bhadada, and S. Mayilraj. 2018. Genome sequence and comparative genomic analysis of a clinically important strain CD11-4 of Janibacter melonis isolated from celiac disease patient. Gut pathogens, 10: 2. DOI: 10.1186/s13099-018-0229-x.

Abu Bakar, N., R. Badrun, L. Rozano, L. Ahmad, M. F. Mohd Raih, and A. A. Tarmizi. 2017. Identification and validation of putative Erwinia mallotivora effectors via quantitative proteomics and Real Time Analysis. J. Agric. Food. Tech. 7(9): 10-21.

Lu, Y., L. Xu, W. Shu, J. Zhou, X. Chen, Y. Xu, and G. Qian. 2017. Microbial mediated iron redox cycling in Fe (hydr)oxides for nitrite removal. Bioresour Technol. 224: 34-40. DOI: 10.1016/j.biortech.2016.10.025.

Alhasawi, A, J. Costanzi, C. Auger, N. D. Appanna, and V. D. Appanna. 2015. Metabolic reconfigurations aimed at the detoxification of a multi-metal stress in Pseudomonas fluorescens: implications for the bioremediation of metal pollutants. J Biotechnol. 200: 38-43. DOI: 10.1016/j.jbiotec.2015.01.029.

Munzinger, M., H. Budzikiewicz, D. Expert, C. Enard, and J. Meyer. 2000. Achromobactin, a new citrate siderophore of Erwinia chrysanthemi. A Journal of Biosciences. 55: 328-332. DOI: https://doi.org/10.1515/znc-2000-5-605.

Aznar, A., and A. Dellagi. 2015. New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals?. J Exp Bot. 66(11): 3001-10. DOI: 10.1093/jxb/erv155.

Forman, S, M. J. Nagiec, J. Abney, R. D. Perry, and J. D. Fetherston. 2007. Analysis of the aerobactin and ferric hydroxamate uptake systems of Yersinia pestis. Microbiology. 153(7): 2332-41. DOI: 10.1099/mic.0.2006/004275-0.

Hantke, K. 2004. Ferrous iron transport. In Iron Transport in Bacteria, pp. 178–184. Edited by J. H. Crosa, A. R. Mey & S. M. Payne. Washington, DC: ASM Press. DOI: 10.1093/femsre/fuv049.

del Rio, M. L., J. Navas, A. J. Martin, C. B. Gutierrez, J. I. Rodriguez-Barbosa, and E. F. Rodriguez Ferri. 2006. Molecular characterization of Haemophilus parasuis ferric hydroxamate uptake (fhu) genes and constitutive expression of the FhuA receptor. Vet. Res. 37: 49-59. DOI: 10.1051/vetres:2005039.

Fecker, L. and V. Braun. 1983. Cloning and expression of the fhu genes involved in iron (III)-hydroxamate uptake by Escherichia coli. J. Bacteriol. 156: 1301-1314.

Abdelhamed, H., J. Lu, A. Shaheen, A. Abbass, M. L. Lawrence, and A. Karsi. 2013. Construction and evaluation of an Edwardsiella ictaluri fhuC mutant. Vet Microbiol. 162(2-4): 858-65. DOI: 10.1016/j.vetmic.2012.11.006.

Mikael, L. G., P. D. Pawelek, J. Labrie, M. Sirois, J. W. Coulton, and M. Jacques. 2002. Molecular cloning and characterization of the ferric hydroxamate uptake (fhu) operon in Actinobacillus pleuropneumoniae. Microbiology. 148(9): 2869-82. DOI: 10.1099/00221287-148-9-2869.

Abdelhamed, H, J. Lu, M. L. Lawrence, and A. Karsi. 2016. Ferric hydroxamate uptake system contributes to Edwardsiella ictaluri virulence. Microb Pathog. 100: 195-200. DOI: 10.1016/j.micpath.2016.09.018.

Rashid, M., S. Saha and G. P. S. Raghava. 2007. Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs. BMC Bioinformantics. 8: 337. DOI: 10.1186/1471-2105-8-337.

Shen, H. B. and K. C. Chou. 2010. Gneg-mPLoc: A top-down strategy to enhance the quality of predicting subcellular localization of Gram-negative bacterial proteins. Journal of Theoretical Biology. 264: 326-333. DOI: 10.1016/j.jtbi.2010.01.018.

Hall, B.G. 2013. Building Phylogenetic Trees from Molecular Data with MEGA. Molecular Biology and Evolution. 30(5): 1229–1235. DOI: 10.1093/molbev/mst012.

Benkert, P., M. Biasini, and T. Schwede. 2011. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 27: 343-350. DOI: 10.1093/bioinformatics/btq662.

Speziali, C. D., S. E. Dale, J. A. Henderson, E. D. Vinés, and D. E. Heinrichs. 2006. Requirement of Staphylococcus aureus ATP-Binding Cassette-ATPase FhuC for Iron-Restricted Growth and Evidence that It Functions with More than One Iron Transporter. Journal of Bacteriology. 188(6): 2048-2055. DOI: 10.1128/JB.188.6.2048-2055.2006

Downloads

Published

2020-04-21

Issue

Section

Science and Engineering

How to Cite

IN SILICO ANALYSIS AND FUNCTIONAL CHARACTERIZATION OF FHUB, A COMPONENT OF ERWINIA MALLOTIVORA FERRIC HYDROXAMATE UPTAKE SYSTEM. (2020). Jurnal Teknologi, 82(3). https://doi.org/10.11113/jt.v82.13635