CHARACTERIZATION AND USE OF AGROINDUSTRIAL BY-PRODUCTS IN THE REMOVAL OF METAL IONS IN AQUEOUS SOLUTION

Authors

  • Tejada-Tovar Candelaria Department of Engineering, Chemical Engineering Program, Process Design and Biomass Utilization Research Group (IDAB), University of Cartagena, 130015, Cartagena, Colombia
  • Villabona-Ortiz Angel aDepartment of Engineering, Chemical Engineering Program, Process Design and Biomass Utilization Research Group (IDAB), University of Cartagena, 130015, Cartagena, Colombia
  • Ruiz-Paternina Erika Department of Engineering, Chemical Engineering Program, Process Design and Biomass Utilization Research Group (IDAB), University of Cartagena, 130015, Cartagena, Colombia
  • Herrera-Barros Adriana Department of Engineering, Chemical Engineering Program, Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), University of Cartagena, 130015, Cartagena, Colombia
  • Ortega-Toro Rodrigo Department of Engineering, Food Engineering Program, Food Packaging and Shelf Life Research Group (FP&SL), University of Cartagena, 130015, Cartagena, Colombia

DOI:

https://doi.org/10.11113/jt.v81.13644

Keywords:

Agroindustrial by-products, surface area, chromium (IV), nickel (II), bio-adsorbent

Abstract

Contamination of surface waters with heavy metals causes concern due to their toxicity, resistance to degradation and adverse effects on human health and aquatic biota. On the other hand, the search for uses and applications of agroindustrial waste has become a priority in the environmental agenda, due to the large volumes generated. Thus, adsorption is presented as an alternative to using these wastes in the treatment of water contaminated with metal ions. The objective of this work was the study of the use and characterisation of adsorbents of an agroindustrial source (palm bagasse) and by-products of the process of obtaining starch (yam and plantain), for its use in the removal of Cr (VI) and Ni (II) ions in a batch system. The adsorption tests were carried out at an initial concentration of 100 ppm ions at 200 rpm using 1 g of material in 100 mL of solution. The adsorbents were characterised by Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, micro-elemental analysis, physicochemical analysis and surface area measurement by Brunauer-Emmett-Teller analysis. From the results, it is established that the palm bagasse has a pore volume twice higher than the other biomaterials. It was determined by the adsorption results, for Cr (VI), were superior in all materials to those obtained for Ni (II). The three agroindustrial residues studied presented high percentages of adsorption efficiency, above 70%, with palm bagasse standing out with an adsorption efficiency of 92%; Therefore, the use of these three biomasses is recommended to treat water contaminated with Cr (VI).

Author Biographies

  • Tejada-Tovar Candelaria, Department of Engineering, Chemical Engineering Program, Process Design and Biomass Utilization Research Group (IDAB), University of Cartagena, 130015, Cartagena, Colombia

    Chemical Engineering Program

    Professor

    Universidad de Cartagena

  • Villabona-Ortiz Angel, aDepartment of Engineering, Chemical Engineering Program, Process Design and Biomass Utilization Research Group (IDAB), University of Cartagena, 130015, Cartagena, Colombia

    Chemical Engineering Program

    Professor

    Universidad de Cartagena

  • Ortega-Toro Rodrigo, Department of Engineering, Food Engineering Program, Food Packaging and Shelf Life Research Group (FP&SL), University of Cartagena, 130015, Cartagena, Colombia

    Department of Food Engineering

    Professor

References

FAO. 2017. Food and Agricultural Organization. El futuro de la alimentación y la agricultura. In: www.fao.org/3/a-i6583e.pdf.

UNESCO. 2009. United Nations Educational, Scientific, and Cultural Organization. World water assessment program. In: http://www.unesco.org/new/en/natural-sciences/special-themes/global-climate-change/adaptation-forum/world-water-assessment-programme/.

Moammadi S., Karimi M., Afzali D. & Mansouri F. 2010. Removal of Pb (II) from Aqueous Solutions Using Activated Carbon from Sea-buckthorn Stones by Chemical Activation. Desalination. 262(1-3): 86-93.

DOI: http://dx.doi.org/10.1016/j.desal.2010.05.048.

Jiménez Ramos, I., Rondón, W., Rojas de Astudillo, L., Rojas de Gáscue, B., Prin, J. L., Freire, D., ... & González, O. 2017. Síntesis de carbón activado a partir de epicarpio de Attalea macrolepis y su aplicación en la remoción de Pb 2+ en soluciones acuosas. Revista internacional de contaminación ambiental. 33(2): 303-316.

DOI: http://dx.doi.org/10.20937/rica.2017.33.02.11.

Mittal, A., Mittal, J., Malviya, A., & Gupta, V. K. 2010. Removal and Recovery of Chrysoidine Y from Aqueous Solutions by Waste Materials. Journal of Colloid and Interface Science. 344(2): 497-507.

DOI: https://doi.org/10.1016/j.jcis.2010.01.007.

Quiñones, E., Tejada, C., Arcia, C., & Ruiz, V. 2013. Remoción de plomo y níquel en soluciones acuosas usando biomasas lignocelulósicas: una revisión. Revista UDCA Actualidad & Divulgación Científica. 16(2): 479-489.

DOI: https://doi.org/10.1016/j.arabjc.2011.02.030.

Ghorbel-Abid, I., & Trabelsi-Ayadi, M. 2015. Competitive Adsorption of Heavy Metals on Local Landfill Clay. Arabian Journal of Chemistry. 8(1): 25-3.

Garg, U. K., Kaur, M. P., Garg, V. K., & Sud, D. 2008. Removal of Nickel(II) from Aqueous Solution by Adsorption on Agricultural Waste Biomass Using a Response Surface Methodological Approach. Bioresource Technology. 99(5): 1325-1331.

Doi: https://doi.org/10.1016/j.biortech.2007.02.011.

Sheng, P. X., Ting, Y.-P., Chen, J. P., & Hong, L. 2004. Sorption of Lead, Copper, Cadmium, Zinc, and Nickel by Marine Algal Biomass: Characterization of Biosorptive Capacity and Investigation of Mechanisms. Journal of Colloid and Interface Science. 275(1): 131-141.

Doi: https://doi.org/10.1016/j.jcis.2004.01.036.

Rangabhashiyam, S., & Selvaraju, N. 2015. Evaluation of the Biosorption Potential of a Novel Caryota Urens Inflorescence Waste Biomass for the Removal of Hexavalent Chromium from Aqueous Solutions. Journal of the Taiwan Institute of Chemical Engineers. 47: 59-70.

Doi: https://doi.org/10.1016/j.jtice.2014.09.034.

Burevska, K. A., Memedi, H., Lisichkov, K., Kuvendziev, S., Marinkovski, M., Ruseska, G., & Grozdanov, A. 2018. Biosorption of Nickel Ions from Aqueous Solutions by Natural and Modified Peanut Husks: Equilibrium and Kinetics. Water and Environment Journal. 32(2): 276-284.

Doi: https://doi.org/10.1111/wej.12325.

Panda, G. C., Das, S. K., Bandopadhyay, T. S., & Guha, A. K. 2007. Adsorption of Nickel on Husk of Lathyrus Sativus: Behavior and Binding Mechanism. Colloids and Surfaces B: Biointerfaces. 57(2): 135-142.

Doi: https://doi.org/10.1016/j.colsurfb.2007.01.022.

Guyo, U., Sibanda, K., Sebata, E., Chigondo, F., & Moyo, M. 2016. Removal of Nickel (II) from Aqueous Solution by Vigna Unguiculata (Cowpea) Pods Biomass. Water Science and Technology. 73(10): 2301-2310.

Doi: https://doi.org/10.2166/wst.2016.012.

Omorogie, M. O., Babalola, J. O., Unuabonah, E. I., Song, W., & Gong, J. R. 2016. Efficient Chromium Abstraction from Aqueous Solution Using a Low-cost Biosorbent: Nauclea Diderrichii Seed Biomass Waste. Journal of Saudi Chemical Society. 20(1): 49-57.

Doi: https://doi.org/10.1016/j.jscs.2012.09.017.

Iqbal, M., & Khera, R. A. 2015. Adsorption of Copper and Lead in Single and Binary Metal System onto Fumaria indica biomass. Chem. Int. 1(3): 157b-163b.

Kieling, A. G., Mendel, T., & Caetano, M. O. 2018. Efficiency of Rice Husk Ash to Adsorb Chromium (VI) using the Allium Cepa Toxicity Test. Environmental Science and Pollution Research. 1-9.

Doi: https://doi.org/10.1007/s11356-018-3722-3.

Saleem, M., Wongsrisujarit, N., & Boonyarattanakalin, S. 2016. Removal of Nickel (II) ion by Adsorption on Coconut Copra Meal Biosorbent. Desalination and Water Treatment. 57(12): 5623-5635.

Doi: https://doi.org/10.1080/19443994.2015.1005155.

Shi, X., Gong, B., Liao, S., Wang, J., Liu, Y., Wang, T., & Shi, J. 2019. Removal and Enrichment of Cr (VI) from Aqueous Solutions by Lotus Seed Pods. Water Environment Research.

Doi: https://doi.org/10.1002/wer.1187.

DOI: https://doi.org/10.1016/j.arabjc.2011.02.030.

Maniglia, B. C., & Tapia-Blácido, D. R. 2016. Isolation and Characterization of Starch from Babassu Mesocarp. Food Hydrocolloids. 55: 47-55.

DOI: https://doi.org/10.1016/j.foodhyd.2015.11.001Get.

Wu, Y., Fan, Y., Zhang, M., Ming, Z., Yang, S., Arkin, A., & Fang, P. 2016. Functionalized Agricultural Biomass as a Low-Cost Adsorbent: Utilization of Rice Straw Incorporated with Amine Groups for the Adsorption of Cr (VI) and Ni (II) from Single and Binary Systems. Biochemical Engineering Journal. 105: 27-35.

DOI: https://doi.org/10.1016/j.bej.2015.08.017.

Wahab, M. A., Jellali, S., & Jedidi, N. 2010. Ammonium Biosorption onto Sawdust: FTIR Analysis, Kinetics and Adsorption Isotherms Modeling. Bioresource Technology. 101(14): 5070-5075.

DOI: https://doi.org/10.1016/j.biortech.2010.01.121.

Mitra, T., Singha, B., Bar, N., & Das, S. K. 2014. Removal of Pb (II) Ions from Aqueous Solution Using Water Hyacinth Root by Fixed-bed Column and ANN Modeling. Journal of Hazardous Materials. 273: 94-103.

DOI: https://doi.org/10.1016/j.jhazmat.2014.03.025Get.

Mahamadi, C., & Nharingo, T. 2010. Competitive Adsorption of Pb2+, Cd2+ and Zn2+ ions onto Eichhornia crassipes in Binary and Ternary Systems. Bioresource Technology. 101(3): 859-864.

DOI: https://doi.org/10.1016/j.biortech.2009.08.097.

Roh, H., Yu, M. R., Yakkala, K., Koduru, J. R., Yang, J. K., & Chang, Y. Y. 2015. Removal Studies of Cd (II) and Explosive Compounds Using Buffalo Weed Biochar-alginate Beads. Journal of Industrial and Engineering Chemistry. 26: 226-233.

DOI: https://doi.org/10.1016/j.jiec.2014.11.034.

Li, X., Tang, Y., Cao, X., Lu, D., Luo, F., & Shao, W. 2008. Preparation and Evaluation of Orange Peel Cellulose Adsorbents for Effective Removal of Cadmium, Zinc, Cobalt and Nickel. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 317(1-3): 512-521.

DOI: https://doi.org/10.1016/j.colsurfa.2007.11.031.

Ahmad, F., Daud, W. M. A. W., Ahmad, M. A., & Radzi, R. 2012. Cocoa (Theobroma cacao) Shell-based Activated Carbon by CO2 Activation in Removing of Cationic Dye from Aqueous Solution: Kinetics and Equilibrium Studies. Chemical Engineering Research and Design. 90(10): 1480-1490.

DOI: https://doi.org/10.1016/j.cherd.2012.01.017.

Liu, Q. S., Zheng, T., Li, N., Wang, P., & Abulikemu, G. 2010. Modification of Bamboo-based Activated Carbon Using Microwave Radiation and Its Effects on the Adsorption of Methylene Blue. Applied Surface Science. 256(10): 3309-3315.

DOI: https://doi.org/10.1016/j.apsusc.2009.12.025.

Å oÅ¡tarić, T. D., Petrović, M. S., Pastor, F. T., LonÄarević, D. R., Petrović, J. T., Milojković, J. V., & Stojanović, M. D. 2018. Study of Heavy Metals Biosorption on Native and Alkali-Treated Apricot Shells and Its Application in Wastewater Treatment. Journal of Molecular Liquids. 259: 340-349.

DOI: https://doi.org/10.1016/j.molliq.2018.03.055.

Asuquo, E. D., & Martin, A. D. 2016. Sorption of Cadmium (II) Ion from Aqueous Solution onto Sweet Potato (Ipomoea Batatas L.) Peel Adsorbent: Characterisation, Kinetic and Isotherm Studies. Journal of Environmental Chemical Engineering. 4(4): 4207-4228.

DOI: https://doi.org/10.1016/j.jece.2016.09.024.

Singh, S. A., & Shukla, S. R. 2016. Adsorptive Removal of Cobalt Ions on Raw and Alkali-treated Lemon Peels. International Journal of Environmental Science and Technology. 13(1): 165-178.

DOI: https://doi.org/10.1007/s13762-015-0801-6.

Gustafsson, J. P., Pechová, P., & Berggren, D. 2003. Modeling Metal Binding to Soils: The Role of Natural Organic Matter. Environmental Science & Technology. 37(12): 2767-2774. DOI: https://doi.org/10.1021/es026249t.

Sha, H., Wu, Y., & Fan, Y. 2017. Utilization of Industrial Waste as a Novel Adsorbent: Mono/Competitive Adsorption of Chromium(VI) and Nickel(II) using Diatomite Waste Modified by EDTA. Applied Organometallic Chemistry. 32(1): e3977.

Doi: https://doi.org/10.1002/aoc.3977.

Ranasinghe, S. H., Navaratne, A. N., & Priyantha, N. 2018. Enhancement of Adsorption Characteristics of Cr(iii) and Ni(ii) by Surface Modification of Jackfruit Peel Biosorbent. Journal of Environmental Chemical Engineering. 6(5): 5670-5682.

Doi: https://doi.org/10.1016/j.jece.2018.08.058.

Dai, Y., Sun, Q., Wang, W., Lu, L., Liu, M., Li, J., Yang, S., Sun, Y., Zhang, K., Xu, J., Zheng, W:, Hu, Z., Yang, Y., Gao, Y., Chen, Y., Zhang., X., Gao, F., & Zhang, Y. 2018. Utilizations of Agricultural Waste as Adsorbent for the Removal of Contaminants: A Review. Chemosphere. 211: 235-253.

Doi: https://doi.org/10.1016/j.chemosphere.2018.06.179.

De Gisi, S., Lofrano, G., Grassi, M., & Notarnicola, M. 2016. Characteristics and Adsorption Capacities of Low-cost Sorbents for Wastewater Treatment: A Review. Sustainable Materials and Technologies: 9: 10-40.

Doi: https://doi.org/10.1016/j.susmat.2016.06.002.

Downloads

Published

2019-09-22

Issue

Section

Science and Engineering

How to Cite

CHARACTERIZATION AND USE OF AGROINDUSTRIAL BY-PRODUCTS IN THE REMOVAL OF METAL IONS IN AQUEOUS SOLUTION. (2019). Jurnal Teknologi (Sciences & Engineering), 81(6). https://doi.org/10.11113/jt.v81.13644