MECHANICAL PROPERTIES OF GIGANTOCHLOA SCORTECHINII BAMBOO PARTICLE REINFORCED SEMIRIGID POLYVINYL CHLORIDE COMPOSITES

Authors

  • Siti Atiqa Al Zahra Mat Darus Centre for Materials and Smart Manufacturing, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Mariyam Jameelah Ghazali Centre for Materials and Smart Manufacturing, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Che Husna Azhari Centre for Materials and Smart Manufacturing, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Rozli Zulkifli Centre for Materials and Smart Manufacturing, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Ahmad Adlie Shamsuri Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Product (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v82.13693

Keywords:

Alkali treatment, bamboo particle, polyvinyl chloride, steam explosion, mechanical properties

Abstract

This investigation aims to study the mechanical properties of the bamboo particle (BP) (Gigantochloa scortechinii) reinforced with semirigid Polyvinyl Chloride (PVC) composites before and after the steam explosion (SE)-alkali treatment. Mechanical properties, namely, tensile, flexural and impact strengths, were determined using universal tensile and impact testing machines according to ASTM standard. The tensile and flexural strengths of the composites were improved after SE-alkali treatment. Results indicated that the tensile and flexural strengths of the composites increased and reached the optimum values of 17.42 and 11.86 MPa, respectively for SE-alkali treatment BP reinforced semirigid PVC with 40 wt% particle content. The impact strength of SE-alkali-treated composites was unimproved due to less dense and rigid particle.

Author Biographies

  • Siti Atiqa Al Zahra Mat Darus, Centre for Materials and Smart Manufacturing, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

    Mechanical and Materials Engineering Department, 

    Faculty of Engineering and Built Environment

    Universiti Kebangsaan Malaysia

    43600 Bangi, Selangor.

  • Mariyam Jameelah Ghazali, Centre for Materials and Smart Manufacturing, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

    Associate Prof. Dr. Mariyam Jameelah Ghazali

    Centre for Materials and Smart MAnufacturing, 

    Faculty of Engineering and Built Environment

    Universiti Kebangsaan Malaysia

    43600 Bangi, Selangor.

  • Che Husna Azhari, Centre for Materials and Smart Manufacturing, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

    Permata Insan 

    Universiti Sains Islam Malaysia

    Bandar Baru Nilai

    71800 Nilai

    Negeri Sembilan

  • Rozli Zulkifli, Centre for Materials and Smart Manufacturing, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

    Centre for Materials and Smart MAnufacturing, 

    Faculty of Engineering and Built Environment

    Universiti Kebangsaan Malaysia

    43600 Bangi, Selangor.

References

N. E. Zafeiropoulos, C. A. Baillie, and J. M. Hodgkinson. 2002. Engineering and Characterisation of the Interface in Flax Fibre/Polypropylene Composite Materials. Part II. The Effect of Surface Treatments on the Interface. Compos. Part A Appl. Sci. Manuf. 33(9): 1185-1190.

C. A. Fuentes, L. Q. N. Tran, C. Dupont-Gillain, W. Vanderlinden, S. De Feyter, A. W. Van Vuure, and I. Verpoest. 2011. Wetting Behaviour and Surface Properties of Technical Bamboo Fibres. Colloids Surfaces A Physicochem. Eng. Asp. 380(1-3): 89-99.

B. Rashid, Z. Leman, M. Jawaid, M. J. Ghazali, and M. R. Ishak. 2016. The Mechanical Performance of sugar Palm Fibres (ijuk) reinforced Phenolic Composites. Int. J. Precis. Eng. Manuf. 17(8): 1001-1008.

B. L. Shah, L. M. Matuana, and P. a. Heiden. 2005. Novel Coupling Agents for PVC/wood-flour Composites. J. Vinyl Addit. Technol. 11(4): 160-165.

J. Gassan and A. K. Bledzki. 1999. Possibilities for Improving the Mechanical Properties of Jute/Epoxy Composites by Alkali Treatment of Fibres. Compos. Sci. Technol. 59(9): 1303-1309.

S. Tanpichai and S. Witayakran. 2017. All-cellulose Composite Laminates Prepared from Pineapple Leaf Fibers Treated with Steam Explosion and Alkaline Treatment. J. Reinf. Plast. Compos. 73168441770492.

R. Dweiri and C. H. Azhari. 2004. Thermal and Flow Property – Morphology Relationship of Sugarcane Bagasse Fiber-filled Polyamide 6 Blends.

M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona. 2013. Effects of Chemical Treatments on Hemp Fibre Structure. Appl. Surf. Sci. 276: 13-23.

H. Jaya, M. F. Omar, H. Md Akil, Z. A. Ahmad, and N. N. Zulkepli. 2016. Effect of Alkaline Treatment on Sawdust Reinforced High Density Polyethylene Composite under Wide Strain Rate. Mater. Sci. Forum. 840(AUGUST): 103-107.

K. Xu, K. Li, T. Zhong, L. Guan, C. Xie, and S. Li. 2014. Effects of Chitosan as Biopolymer Coupling Agent on the Thermal and Rheological Properties of Polyvinyl Chloride/Wood Flour Composites. Compos. Part B Eng. 58: 392-399.

B. S. L. Brito, F. V. Pereira, J. L. Putaux, and B. Jean. 2012. Preparation, Morphology and Structure of Cellulose Nanocrystals from Bamboo Fibers. Cellulose. 19(5): 1527-1536.

Z. a M. Ishak, A. Aminullah, H. Ismail, and H. D. Rozman. 1997. Effect of Silane-based Coupling Agents and Acrylic Acid Based Compatibilizers on Mechanical Properties of Oil Palm Empty Fruit Bunch Filled High-Density Polyethylene Composites. J. Appl. Polym. Sci. 68: 2189-2203.

K. Okubo, T. Fujii, and N. Yamashita. 2005. Improvement of Interfacial Adhesion in Bamboo Polymer Composite Enhanced with Micro-fibrillated Cellulose. JSME Int. J. Ser. A. 48(4): 199-204.

T. V. Dieu, N. T. Liem, T. T. Mai, and N. H. Tung. 2004. Study on Fabrication of BMC Laminates Based on Unsaturated Polyester Resin Reinforced by Hybrid Bamboo/Glass Fibers. 47(4): 570-573.

S. Biswas, Q. Ahsan, A. Cenna, M. Hasan, and A. Hassan. 2013. Physical and Mechanical Properties of Jute, Bamboo and Coir Natural Fiber. Fibers Polym. 14(10): 1762-1767.

Y. Yu, H. Wang, F. Lu, G. Tian, and J. Lin. 2014. Bamboo Fibers for Composite Applications: A Mechanical and Morphological Investigation. J. Mater. Sci. 49(6): 2559-2566.

T.-C. Yang, T.-L. Wu, K.-C. Hung, Y.-L. Chen, and J.-H. Wu. 2015. Mechanical Properties and Extended Creep Behavior of Bamboo Fiber Reinforced Recycled Poly(Lactic Acid) Composites Using the Time–temperature Superposition Principle. Constr. Build. Mater. 93: 558-563.

Z. Khan, B. F. Yousif, and M. M. Islam. 2017. Fracture Behaviour of Bamboo Fiber Reinforced Epoxy Composites. Compos. Part B Eng. 116: 186-199.

R. Tokoro, D. M. Vu, K. Okubo, T. Tanaka, T. Fujii, and T. Fujiura. 2008. How to Improve Mechanical Properties of Polylactic Acid with Bamboo Fibers. J. Mater. Sci. 43(2): 775-787.

S. Anuar, B. Warren, and G. Andreas. 2017. Thermal Stability of Processed PVC/bamboo Blends: Effect of Compounding Procedures. Eur. J. Wood Wood Prod. 75(2): 147-159.

L. M. Matuana, C. B. Park, and J. J. Balatinecz. 1997. The Effect of Low Levels of Plasticizer on the Rheological and Mechanical Properties of Polyvinyl ChIoride/News Print Fiber Composites. Journal of Vinyl and Additive Technology. 3(4): 265-273.

E. Calò, A. Greco, and A. Maffezzoli. 2011. Effects of Diffusion of a Naturally-derived Plasticizer from Soft PVC. Polym. Degrad. Stab. 96(5): 784-789.

M. Z. Ali and A. Javaid. 2017. Mechanical and Rheological Characterization of Efficient and Economical Structural Wood-Plastic Composite of Wood and PVC. J. Chem. Soc. Pakistan. 39(2): 183-189.

W. Stelte. 2013. Steam Explosion for Biomass Pre-treatment. Result. Kontrakt report. Danish Technol. institute, Cent. Biomass Biorefinery.

J. Gassan and A. K. Bledzki. 1998. Alkali Treatment of Jute Fibers : Relationship Between Structure and Mechanical Properties. J. Appl. Polym. Sci. 623-629.

L. Chazeau, J. Y. Cavaille, G. Canova, R. Dendievel, and B. Boutherin. 1999. Viscoelastic Properties of Plasticized PVC Reinforced with Cellulose Whiskers. J. Appl. Polym. Sci. 71(11): 1797-1808.

S. Maruyama, H. Takagi, Y. Nakamura, A. N. Nakagaito, and C. Sasaki. 2015. Influence of Alkali Treatment on Mechanical Properties of Poly Lactic Acid Bamboo Fiber Green Composites. Adv. Mater. Res. 1110: 56-59.

S. A. Bahari and A. Krause. 2015. Utilizing Malaysian Bamboo for Use in Thermoplastic Composites. J. Clean. Prod. 1-9.

R. Wirawan, S. M. Sapuan, K. Abdan, and R. Yunus. 2011. Tensile and Impact Properties of Sugarcane Bagasse/Poly(vinyl Chloride) Composites. Key Eng. Mater. 471-472: 167-172.

N. H. Mat Zubir, S. T. Sam, R. Santiagoo, N. N. Zulkepli, and J. Wang. 2016. Tensile Properties of Rice Straw Fiber Reinforced Poly(Lactic Acid) Biocomposites. Adv. Mater. Res. 1133: 598-602.

L. Jiang, F. Chen, J. Qian, J. Huang, M. Wolcott, L. Liu, and J. Zhang. 2010. Reinforcing and Toughening Effects of Bamboo Pulp Fiber on Poly(3-hydroxybutyrate-C0-3-Hydroxyvalerate) Fiber Composites. Ind. Eng. Chem. Res. 49(2): 572-577.

N. Malhotra, K. Sheikh, and S. Rani. 2012. A Review on Mechanical Characterization of Natural Fiber Reinforced Polymer Composites. J. Eng. Res. Stud. 3(2): 75-80.

D. Tholibon, A. B. Sulong, N. Muhamad, N. Farhani, I. Izdihar, T. Mohd, K. Fadzly, and M. Radzi. 2017. Optimization of Hot Pressing Process for Unidirectional Kenaf Polypropylene Composites by Full Factorial Design. J. Mech. Eng. 3(2): 23-35.

S. A. Paul, K. Joseph, G. D. G. Mathew, L. A. Pothen, and S. Thomas. 2010. Influence of Polarity Parameters on the Mechanical Properties of Composites from Polypropylene Fiber and Short Banana Fiber. Compos. Part A Appl. Sci. Manuf. 41(10): 1380-1387.

A. M. Radzi, S. M. Sapuan, M. Jawaid, and M. R. Mansor. 2017. Influence of Fibre Contents on Mechanical and Thermal Properties of Roselle Fibre Reinforced Polyurethane Composites. Fibers Polym. 18(7): 1353-1358.

N. Saba, F. Mohammad, M. Pervaiz, M. Jawaid, O. Y. Alothman, and M. Sain. 2017. Mechanical, Morphological and Structural Properties of Cellulose Nanofibers Reinforced Epoxy Composites. 97. Elsevier B.V.

K. M. Z. Hossain, R. M. Felfel, C. D. Rudd, W. Thielemans, and I. Ahmed. 2014. The Effect of Cellulose Nanowhiskers on the Flexural Properties of Self-reinforced Polylactic Acid Composites. React. Funct. Polym. 85: 193-200.

M. H. Sah. 2017. Mechanical Properties of Coconut Shell Powder Reinforced PVC Composites in Automotive Applications. J. Mech. Eng. 14(2): 49-61.

R. B. Yusoff, H. Takagi, and A. N. Nakagaito. 2016. Tensile and Flexural Properties of Polylactic Acid-based Hybrid Green Composites Reinforced by Kenaf, Bamboo and Coir Fibers. Ind. Crops Prod. 94: 562-573.

SUJITO and H. TAKAGI. 2011. Flexural Strength and Impact Energy of Microfibril Bamboo Fiber Reinforced Environment-Friendly Composites Based on Poly-lactic Acid Resin. Int. J. Mod. Phys. B. 25(31): 4195-4198.

D. Bachtiar, S. M. Sapuan, and M. M. Hamdan. 2009. The Influence of Alkaline Surface Fibre Treatment on the Impact Properties of Sugar Palm Fibre-Reinforced Epoxy Composites. Polym. Plast. Technol. Eng. 48(4): 379-383.

K. M. M. Rao, A. V. R. Prasad, M. N. V. R. Babu, K. M. Rao, and A. V. S. S. K. S. Gupta. 2007. Tensile Properties of Elephant Grass Fiber Reinforced Polyester Composites. J. Mater. Sci. 42(9): 3266-3272.

Downloads

Published

2020-02-03

Issue

Section

Science and Engineering

How to Cite

MECHANICAL PROPERTIES OF GIGANTOCHLOA SCORTECHINII BAMBOO PARTICLE REINFORCED SEMIRIGID POLYVINYL CHLORIDE COMPOSITES. (2020). Jurnal Teknologi, 82(2). https://doi.org/10.11113/jt.v82.13693