PHENOLIC CONTENT, ANTIOXIDANT ACTIVITY AND BIODIVERSITY CHANGES DURING SPONTANEOUS FERMENTATION OF CARICA PAPAYA LEAF
DOI:
https://doi.org/10.11113/jt.v82.13753Keywords:
Spontaneous fermentation, Carica papaya leaf, total phenolic content, antioxidant, lactic acid bacteriaAbstract
The spontaneous fermentation was carried out on Carica papaya leaf (CPL) in view of its potential improvement on antioxidant functionality and cultivation of lactic acid bacteria. The effect of the spontaneous fermentation on the total phenolic content and antioxidant activity of CPL, as well as biodiversity profiling were evaluated in this study. Total phenolic content and antioxidant capacity of the fermented CPL were 31.14 mg GAE g-1 and 405.8 mM TE g-1 respectively, higher than the unfermented CPL (5.71 mg GAE/g and 130.5 mM TE g-1) respectively. Microbial community was predominantly lactic acid bacteria (LAB) and yeasts, both populated at 104 to 108 CFU/mL during most part of the fermentation. Presumptive Enterobacteriaceae showed up briefly at the onset of the fermentation before disappearing. PCR-DGGE fingerprinting revealed Lactobacillus plantarum (Lb. plantarum) as the sole dominant bacterial species. More diverse yeasts community was detected by PCR-DGGE where succession of Zygosaccharomyces, Saccharomyces, Candida and Aspergillus genera were detected along fermentation time. Spontaneous fermentation successfully enhanced the total phenolic content and antioxidant capacity of the CPL. The cultivation of lactic acid bacteria was indicated by the presence of Lb. plantarum, whereas the disappearance of Enterobacteriaceae conferred a safe consumption of the fermented CPL.
References
Iskandar, Y., and Mustarichie, R. 2018. Chemical Compounds Content Determination and a Pharmacognostic Parameter of Papaya (Carica papaya, Linn.) Leaves Ethanol Extract. Int. J. Pharmaceuc. Res. & Allied Sci. 7(3): 1-9.
Gheith, I., and El-mahmoudy, A. 2018. Novel and Classical Renal Biomarkers as Evidence for the Nephroprotective Effect of Carica Papaya Leaf. Biosci. Reports. 38: 1-11.
DOI: https://doi.org/10.1042/BSR20181187.
Subenthiran, S., Tan, C. C., Cheong, K. C., Thayan, R., Teck, M. B., Muniandy, P. K., Afzan, A., Abdullah, N. R., and Ismail, Z. 2013. Carica Papaya Leaves Juice Significantly Accelerates the Rate of Increase in Platelet Count among Patients with Dengue Fever and Dengue Haemorrhagic Fever. J. Evidence-Based Complementary Altern. Med.: 1-7. DOI: http://dx.doi.org/10.1155/2013/616737.
Canini, A., Alesiani, D., D’Arcangelo, G., and Tagliatesta, P. 2007. Gas Chromatography–Mass Spectrometry Analysis of Phenolic Compounds from Carica Papaya L. Leaf. J. Food Compos. Anal. 20(7): 584-90.
DOI: https://doi.org/10.1016/j.jfca.2007.03.009.
Jafari, S., Ebrahimi, M., Meng, G. Y., Rajion, M. A., and Jahromi, M. F. 2018. Dietary Supplementation of Papaya (Carica Papaya L.) Leaf Affects Abundance of Butyrivibrio Fibrisolvens and Modulates Biohydrogenation of C18 Polyunsaturated Fatty Acids in the Rumen Of Goats. Ital. J. Anim. Sci. 17(2): 326-335.
DOI: https://doi.org/10.1080/1828051X.2017.1361796.
Cardona, F., AndreÌs-Lacuevac, C., Tulipania, S., Tinahones, F. J., and Queipo-Ortuñoa, M. I. 2013. Benefits of Polyphenols on Gut Microbiota and Implications in Human Health. J. Nutr. Biochem. 24(8): 1415–22.
DOI: https://doi.org/10.1016/j.jnutbio.2013.05.001.
Fujita, Y., Tsuno, H., and Nakayama, J. 2017. Fermented Papaya Preparation Restores Age- Related Reductions in Peripheral Blood Mononuclear Cell Cytolytic Activity in Tube- Fed Patients. PLoS One. 12(1): 1-19.
DOI: https://doi.org/10.1371/journal.pone.0169240.
Somanah, J., Putteeraj, M., Aruoma, O. I., and Bahorun, T. 2018. Discovering the Health Promoting Potential of Fermented Papaya Preparation- Its Future Perspectives for the Dietary Management of Oxidative Stress during Diabetes. Fermentation. 83: 1-14.
DOI: https://doi.org/10.3390/fermentation4040083.
Curiel, J. A., Pinto, D., Marzani, B., Filannino, P., Farris, G. A., Gobbetti, M., and Rizzello, C. G. 2015. Lactic Acid Fermentation as a Tool to Enhance the Antioxidant Properties of Myrtus Communis Berries. Microb. Cell Fact. 14(67): 1-10.
DOI: https://doi.org/10.1186/s12934-015-0250-4.
Filannino, P., Cavoski, I., Thlien, N., Vincentini, O., De Angelis, M., Silano, M., Gobbetti, M., and Di Cagno, R. 2016. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti- Inflammatory Properties. PLoS One. 11(3): 1-22.
DOI: https://doi.org/10.1371/journal.pone.0152575.
Touret, T., Oliveira, M., and Semedo-Lemsaddek, T. 2018 Putative Probiotic Lactic Acid Bacteria Isolated from Sauerkraut Fermentations. PLoS One. 13(9): 1-16.
DOI: https://doi.org/10.1371/journal.pone.0203501.
Capozzi, V., Fragasso, M., Romaniello, R., Berbegal, C., Russo, P., and Spano, G. 2017. Spontaneous Food Fermentations and Potential Risks for Human Health. Fermentation. 3(49): 1-19.
DOI: https://doi.org/10.3390/fermentation3040049.
Bernaert, N., Wouters, D., Vuyst, L. D., De Paepe, D., Clercq, H., Van Bockstaele, E., De Loose, M., and Van Droogenbroeckb, B. 2013 Antioxidant Changes of Leek (Allium ampeloprasum var. porrum) during Spontaneous Fermentation of the White Shaft and Green Leaves. J. Sci. Food Agric. 93(9): 2146-2153.
DOI: https://doi.org/10.1016/j.fm.2012.09.016.
Muhialdin, B., Sukor, J., Ismail, R. N., Ahmad, S. W., Me, N. C., and Meor Hussin, A. S. 2018. The Effects of Fermentation Process on the Chemical Composition and Biological Activity of Spider Flower (Gynandropsis gynandra). J. Pure. Appl. Microbiol. 12(2): 497-504.
DOI: https://doi.org/10.22207/JPAM.12.2.08.
Wuyts, S., Van Beeck, W., Oerlemans, E. F. M., Weckx, S., Lievens, B., De Vuyst, L., Wittouck, S., Claes, I. J. J., and De Boeck, I. 2018. Carrot Juice Fermentations as Man-Made Microbial Ecosystems. Appl. Environ. Microbiol. 84(12): 1-16. DOI: https://doi.org/10.1128/AEM.00134-18.
Kimura, S., Tung, Y., Pan, M., and Su N. 2016. Black Garlic : A Critical Review of Its Production, Bioactivity, and Application. J. Food Drug Anal. 25(1): 62-70.
DOI: https://doi.org/10.1016/j.jfda.2016.11.003.
Kawa-Rygielska, J., Adamenko, K., Kucharska, A. Z., and Piórecki, N. 2018. Bioactive Compounds in Cornelian Cherry Vinegars. Molecules. 23(2): 1-16.
DOI: https://doi.org/10.3390/molecules23020379.
Madaan, R., Kumar, S., Bansal, G., and Sharma, A. 2011. Estimation of Total Phenols and Flavonoids in Extracts of Actaea Spicata Roots and Antioxidant Activity Studies. Indian J. Pharm. Sci. 73(6): 666-669.
DOI: https://doi.org/10.4103/0250-474X.100242.
Rahim, M. S. A. A., Salihon, J., Yusoff, M. M., and Damanik, M. R. M. 2013. Antioxidative Activity and Phenols Content in Five Tropical Lamiaceae Plants. J. Trop. Resour. Sustain. Sci. 1(2): 49-54.
Vuong, Q. V., Hirun, S., Roach, P. D., Bowyer, M. C., Phillips, P. A., and Scarlett, C. J. 2013. Effect of Extraction Conditions on Total Phenolic Compounds and Antioxidant Activities of Carica Papaya Leaf Aqueous Extracts. J. Herb. Med. 3(3): 104-11.
DOI: https://doi.org/10.4103/0250-474X.100242.
Muyzer, G., Dewaal, E. C., and Uitierlinden, A. G. 1993. Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA. Appl. Environ. Microbiol. 695-700.
El Shobaky, A., and Montet, D. 2015. New Traceability Strategies based on a Biological Bar Code by PCR-DGGE using Bacterial and Yeast Communities for Determining Farming Type Of Peach. Egypt. J. basic Appl. Sci. 2(4): 327-33.
DOI: https://doi.org/10.1016/j.ejbas.2015.06.002.
Chanprasartsuk, O. O., Prakitchaiwattana, C., Sanguandeekul, R., and Fleet, G. H. 2010. Autochthonous Yeasts Associated with Mature Pineapple Fruits, Freshly Crushed Juice and Their Ferments; and the Chemical Changes During Natural Fermentation. Bioresour. Technol. 101(19): 7500-7509.
DOI: https://doi.org/10.1016/j.biortech.2010.04.047.
Mills, D. A., Johannsen, E. A., and Cocolin, L. 2002. Yeast Diversity and Persistence in Botrytis-Affected Wine Fermentations. Appl. Environ. Microbiol. 68(10): 4884-4893.
DOI: https://doi.org/10.1128/AEM.68.10.4884-4893.2002.
Bae, J. W. 2008. Analysis of Yeast and Archaeal Population Dynamics in Kimchi using Denaturing Gradient Gel Electrophoresis. Int. J. Food Microbiol. 126(1-2): 159-166.
DOI: https://doi.org/10.1016/j.ijfoodmicro.2008.05.013.
Mangunwardoyo, W., Abinawanto, Salamah, A., Sukara, E., Sulistiani, and Dinoto, A. 2016. Diversity and Distribution of Culturable Lactic Acid Bacterial Species in Indonesian Sayur Asin. Iran. J. Microbiol. 8(4): 274-281.
Rizzello, C. G., Coda, R., MacÃas, D. S., Pinto, D., Marzani, B., Filannino, P., Giuliani, G., Paradiso, V. M., Di Cagno, R., and Gobbetti, M. 2013. Lactic Acid Fermentation as a Tool to Enhance the Functional Features of Echinacea spp. Microb. Cell Fact. 12(1): 1-15.
DOI: https://doi.org/10.1186/1475-2859-12-44.
Ho, V. T. T., Zhao, J., and Fleet G. 2015. The Effect of Lactic Acid Bacteria on Cocoa Bean Fermentation. Int. J. Food Microbiol. 205: 54-67.
DOI: https://doi.org/10.1016/j.ijfoodmicro.2015.03.031.
Wouters, D., Bernaert, N., Conjaerts, W., Droogenbroeck, B. V., Loose, M. D., and De Vuyst, L. 2013. Species Diversity, Community Dynamics, and Metabolite Kinetics of Spontaneous Leek Fermentations. Food Microbiol. 33(2): 185-196.
DOI: https://doi.org/10.1016/j.fm.2012.09.016.
Ho, V. T. T., Zhao, J., and Fleet, G. 2014. Yeasts are Essential for Cocoa Bean Fermentation. Int. J. Food Microbiol. 174: 72-87.
DOI: https://doi.org/10.1016/j.ijfoodmicro.2013.12.014.
CaÌrdenas-RodriÌguez, N., Orozco-Ibarra, M., and PeÌrez-Rojas, J. M. 2008. Medicinal Properties of Mangosteen (Garcinia mangostana). Food Chem. Toxicol. 46: 3227-3239. DOI: https://doi.org/10.1016/j.fct.2008.07.024.
Pulido, R. P., Ben Omar, N., Abriouel, H., Lo´pez, R. L., Canamero, M. M., and Galvez, A. 2005. Microbiological Study of Lactic Acid Fermentation of Caper Berries by Molecular and Culture-Dependent Methods. Appl. Environ. Microbiol. 71(12): 7872-7879.
DOI: https://doi.org/10.1128/AEM.71.12.7872-7879.2005.
Swain, M. R., Anandharaj, M., Ray, R. C., and Rani, R. P. 2014. Review Article Fermented Fruits and Vegetables of Asia : A Potential Source of Probiotics. Biotechnology Research International. 1-19.
DOI: http://dx.doi.org/10.1155/2014/250424.
Behera, S. S., Ray, R. C., and Zdolec, N. 2018. Lactobacillus Plantarum with Functional Properties: An Approach to Increase Safety and Shelf-Life of Fermented Foods. Biomed Res. Int.: 1-18.
DOI: https://doi.org/10.1155/2018/9361614.
Ahmad, A., Salik, S., Boon, Y. W., Kofli, N. T. A. N., and Ghazali, A. R. 2018. Mutagenicity and Antimutagenic Activities of Lactic Acid Bacteria (LAB) Isolated from Fermented Durian (Tempoyak). Malaysian J. Heal. Sci. 16: 23-26. DOI: http://dx.doi.org./10.17576/JSKM-2018-04.
Jung, J. Y., Lee, S. H., and Jeon, C. O. 2014. Kimchi Microflora: History, Current Status, and Perspectives for Industrial Kimchi Production. Appl. Microbiol. Biotechnol. 98(6): 2385-2393.
DOI: https://doi.org/10.1007/s00253-014-5513-1.
Ultee, A., Wacker, A., Kunz, D., Löwenstein, R., and König, H. 2013. Microbial Succession in Spontaneously Fermented Grape Must Before, During and After Stuck Fermentation. South African J. Enol. Vitic. 34(1): 68-78.
DOI: https://doi.org/10.21548/34-1-1082.
Harada, R., Yuzuki, M., Ito, K., Shiga, K., Bamba, T., and Fukusaki, E. 2017. Influence of Yeast and Lactic Acid Bacterium on the Constituent Profile of Soy Sauce during Fermentation. J. Biosci. Bioeng. 123(2): 203-208.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.