• Zulkarnain Ali Leman ᵃAdvanced Vehicle System Research Group, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia ᵇDepartment of Mechanical Engineering, Universitas Sriwijaya, Indonesia
  • Mohd Hatta Mohammad Ariff Advanced Vehicle System Research Group, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
  • Hairi Zamzuri Advanced Vehicle System Research Group, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
  • Mohd Azizi Abdul Rahman Advanced Vehicle System Research Group, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
  • Saiful Amri Mazlan Advanced Vehicle System Research Group, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
  • Irfan Bahiuddin ᵃAdvanced Vehicle System Research Group, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia ᶜDepartment of Mechanical Engineering, Vocational College, Universitas Gadjah Mada (UGM), Jl. Yacaranda Sekip Unit IV, 55281 Yogyakarta, Indonesia
  • Fitri Yakub Advanced Vehicle System Research Group, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia



Autonomous vehicle, adaptive MPC controller, trajectory tracking, collisions avoidance


Advancement in active steering technology is vital as the autonomous vehicle technology is preparing to enter the commercialization phase. Accurate trajectory tracking and collision free motion have become an active topic being discussed in research field recently. During an emergency obstacle avoidance manoeuvre conditions, tyre force saturation can easily happened when availability of lateral tyre forces is limited by the law of tyre friction circle. This greatly affects the trajectory tracking performance of the vehicle. Existing controllers such as generic model predictive controller (MPC) and geometric controller (Stanley) need a proper gain tuning to cope with this condition. This is due to the control gains were determined by trial and error basis via linearization process at a certain targeted speed. Therefore, the control performance is limited considering the presence of speed variation as well as extreme manoeuvre trajectory. This paper proposes an Adaptive Model Predictive Controller (MPC) controller to solve aforementioned issues.  First, optimized weighting gains for the steering control were obtained using PSO algorithm. The optimised weighting gains were then scheduled into the proposed Model predictive Controller via a look-up table strategy. In this work, the proposed adaptive MPC controller was designed by using the linearization of the 7 degree-of-freedom (DOF) non-linear vehicle model. Here, the linearized model for controller design was update based on the instantaneous longitudinal speed of the vehicle system plant. 


Noor Hafizah Amer, Khisbullah Hudha, Hairi Zamzuri, Vimal Rau Aparow, Amar Faiz Zainal Abidin, Zulkiffli Abd Kadir, Muhamad Murrad. 2018. Adaptive Modified Stanley Controller with Fuzzy Supervisory System for Trajectory Tracking of an Autonomous Armoured Vehicle. Robotics and Autonomous Systems. 105: 94-111.

Doi: 10.1007/s10846-016-0442-0.

Gaining Han, Weiping Fu, Wen Wang and Zongsheng Wu. 2017. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network. Sensors. 17: 1244. Doi: 10.3390/s17061244.

Shilp Dixit, Saber Fallah, Umberto Montanaro, Mehrdad Dianati, Alan Stevens, Francis Mccullough, Alexandros Mouzakitis. 2018. Trajectory Planning and Tracking for Autonomous Overtaking: State-of-the-art and Prospects. Annual Reviews in Control. 45: 76-86.

Rupp A. & Stolz M. 2017. Survey on Control Schemes for Automated Driving on Highways. Automated Driving. 43-69. Springer. Doi: 10.1007/978-3-319-31895-0_4.

Schildbach, G& Borrelli, F. 2015. Scenario Model Predictive Control for Lane Change Assistance on Highways. Proceedings of the 2015 IEEE Intelligent Vehicles Symposium. 611-616.

Schildbach, G. & Gmbh, E. F. 2016. A New Nonlinear Model Predictive Control Algorithm for Vehicle Path Tracking. Proceedings of the 2016 International Symposium on Advanced Vehicle Control.

Nurbaiti Wahid, Hairi Zamzuri, Mohd Hatta Mohd Arif & N. H. Amer. 2018. Adaptive Potential Field-based Motion Planning Approach and Control for Automated Vehicle Collision Avoidance Systems. 5th Symposium of the International Association of Vehicle System Dynamics, IAVSD 2017. 381-387.

Z. A. Leman, M. Hatta Mohammad Ariff, H. Zamzuri, M. A. Abdul Rahman, and S. Amri Mazlan. 2019. Model Predictive Controller for Path Tracking and Obstacle Avoidance Manoeuvre on Autonomous Vehicle. 12th Asian Control Conf. ASCC 2019. 1271-1276.

S. A. Saruchi, H. Zamzuri, S. A. Mazlan, M. H. M. Ariff and M. A. M. Nordin. 2015. Active Front Steering for Steer-by-wire Vehicle Via Composite Nonlinear Feedback Control. 10th Asian Control Conference (ASCC), Kota Kinabalu, 2015. 1-6. Doi: 10.1109/ASCC.2015.7244432.

Saruchi, Sarah 'Atifah & Zamzuri, Hairi & Zulkarnain, Noraishikin & Ariff, Hatta & Wahid, Nurbaiti. 2017. Composite Nonlinear Feedback with Disturbance Observer for Active Front Steering. Indonesian Journal of Electrical Engineering and Computer Science. 7: 434-441. 10.11591/ijeecs.v7.i2.pp434-441.

M. H. M. Ariff, H. Zamzuri, N. R. N. Idris, S. A. Mazlan and M. A. M. Nordin. 2015. Independent-wheel-drive Electric Vehicle Handling and Stability Assessment Via Composite Nonlinear Feedback Controller. 10th Asian Control Conference (ASCC), Kota Kinabalu, 2015. 1-6. Doi: 10.1109/ASCC.2015.7244454.

B. Soualmi, C. Sentouh, J. C. Popieul, S. Debernard. 2012. Fuzzy Takagi-Sugeno LQ Controller for Lateral Control Assistance of a Vehicle. 2012 IEEE Intelligent Vehicles Symposium. Doi: 10.1109/IVS.2012.6232249.

G. Bayar, M. Bergerman, A. B. Koku, and E. i. Konukseven. 2015. Localization and Control of an Autonomous Orchard Vehicle. Computers and Electronics in Agriculture. 115: 118-128. Doi:10.1109/TCST.2007.894653.

G. Bayar, M. Bergerman, and A. B. Koku. 2016. Improving the Trajectory Tracking Performance of Autonomous Orchard Vehicles using Wheel Slip Compensation. Biosystems Engineering. 146:149-164.

Doi: 10.1016/j.biosystemseng.2015.12.019.

T. Tomatsu, K. Nonaka, K. Sekiguchi, and K. Suzuki. 2015. Model Predictive Trajectory Tracking Control for Hydraulic Excavator on Digging Operation. Control Applications (CCA), 2015 IEEE Conference on. 1136-1141.


A. S. Yamashita, P. M. Alexandre, A. C. Zanin, and D. Odloak. 2016. Reference Trajectory Tuning of Model Predictive Control. Control Engineering Practice. 50: 1-11. Doi:

I. Prodan, S. Olaru, F. A. C. C. Fontes, F. Lobo Pereira, J. Borges de Sousa, C. Stoica Maniu, et al. 2015. Predictive Control for Path-following. From Trajectory Generation to the Parametrization of the Discrete Tracking Sequences. Developments in Model-based Optimization and Control: Distributed Control and Industrial Applications. Cham: Springer International Publishing. 161-181.


G. V. Raffo, G. K. Gomes, J. E. Normey-Rico, C. R. Kelber, and L. B. Becker. 2009. A Predictive Controller for Autonomous Vehicle Path Tracking. IEEE Transactions on Intelligent Transportation Systems. 10: 92-102.

Doi: 10.1109/TITS.2008.2011697.

H. Merabti, K. Belarbi, and B. Bouchemal. 2016. Nonlinear Predictive Control of a Mobile Robot: A Solution using Metaheuristcs. Journal of the Chinese Institute of Engineers. 39: 282-290.

Doi: 10.1080/02533839.2015.1091276.

T. Xue, R. Li, M. Tokgo, J. Ri, and G. Han. 2015. Trajectory Planning for Autonomous Mobile Robot using A Hybrid Improved QPSO Algorithm. Soft Computing. 1-17. Doi:

F. Yakub and Y. Mori. 2015. Comparative Study of Autonomous Path-following Vehicle Control Via Model Predictive Control and Linear Quadratic Control. Journal of Automobile Engineering. 229(12): 1695-1713.

Doi: 10.1177/0954407014566031.

P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat. 2007. Predictive Active Steering Control for Autonomous Vehicle Systems. Control Systems Technology, IEEE Transactions on. 15: 566-580.

C. E. Beal. 2011. Applications of MPC to Vehicle Dynamics for Active Safety and Stability. PhD. Department of Mechanical Engineering, Stanford University.

Doi: 10.1080/00423119508969095

M. Nagai, M. Shino and F. Gao. 2012. Study on Integrated Control of Active Front Steer Angle and Direct Yaw Moment. JSAE Review. 233: 309-315.


Kehtarnavaz, N., Sohn, W. 1991. Steering Control of Autonomous Vehicles by Neural Networks. Proceedings of the American Control Conference, 26-28 June 1991. 3096-3101. Doi: 10.23919/ACC.1991.4791978.

Funabiki, S., Mino, M. 1994. Neural-network Steering Control of an Automated Guided Vehicle. Electr Eng Japan. 114(7): 135-143. Doi: 10.1541/ieejias.115.142.

Hessburg, T., Tomizuka, M. 1994. Fuzzy Logic Control for Lateral Vehicle Guidance. Control Systems Mag, IEEE. 14(4): 55-63. Doi: 10.1109/37.295971.

Naranjo, J. E., Gonzalez, C., Garcia, R., de Pedro, T. 2008. Lane-change Fuzzy Control in Autonomous Vehicles for the Overtaking Maneuver. IEEE Trans Intell Transp Syst. 9(3). 438-450. Doi: 10.1109/TITS.2008.922880.

G. M. Hoffmann, C. J. Tomlin, D. Montemerlo, and S. Thrun. 2007. Autonomous Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental Validation and Racing. American Control Conference, 2007. ACC '07. 2296-2301. Doi: 10.1109/ACC.2007.4282788.

R. Wallace, A. Stentz, C. E. Thorpe, H. Maravec, W. Whittaker, and T. Kanade. 1985. First Results in Robot Road-Following. IJCAI. 1089-1095.

T. Kanade, C. Thorpe, and W. Whittaker. 1986. Autonomous Land Vehicle Project at CMU. Proceedings of the 1986 ACM fourteenth annual conference on Computer science. 71-80. Doi: 10.1145/324634.325197.

T. J. Gordon & M. Lidberg. 2015. Automated Driving and Autonomous Functions on Road Vehicles. International Journal of Vehicles Mechanic and Mobility. 53: 958-994.

Doi: 10.1080/00423114.2015.1037774.




How to Cite

Ali Leman, Z., Mohammad Ariff, M. H., Zamzuri, H., Abdul Rahman, M. A., Mazlan, S. A., Bahiuddin, I., & Yakub, F. . (2022). ADAPTIVE MODEL PREDICTIVE CONTROLLER FOR TRAJECTORY TRACKING AND OBSTACLE AVOIDANCE ON AUTONOMOUS VEHICLE. Jurnal Teknologi, 84(4), 139-148.



Science and Engineering