EFFECT OF IMMOBILIZATION PARAMETERS ON THE IMMOBILIZATION OF CYCLODEXTRIN GLUCANOTRANFERASE ON HOLLOW FIBER MEMBRANE

Authors

  • N. Jamil Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
  • R. C. Man Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
  • S. Suhaimi Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
  • S. M. Shaarani Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
  • Z. I. M. Arshad Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
  • S. K. A. Mudalip Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia
  • S. Z. Sulaiman Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia

DOI:

https://doi.org/10.11113/jt.v82.13881

Keywords:

Adsorption, CGTase, hollow fiber membrane, immobilization parameter, cyclodextrin

Abstract

Cyclodextrin (CD) is a non-reducing maltooligosaccharides which able to form inclusion complexes with many hydrophobic molecules, changing their physical and chemical properties. With these properties, CD has been discovered to have numerous applications in food industries, pharmaceutical, agricultural and environmental engineering. CD is produced by the enzymatic reaction between cyclodextrin glucanotransferase (CGTase) and starch. Various enzyme immobilization techniques such as adsorption, entrapment, encapsulation and cross-linking have been applied to improve the production of CD. Some of the immobilization parameters such as contact time, agitation rate and pH of the immobilization solution play a vital role in enzyme immobilization process, in order to achieve high production of CD. In the present study, the CGTase from Bacillus licheniformis was immobilized on polyvinylidene difluoride (PVDF) hollow fiber membrane via adsorption technique. The efficiency of enzyme immobilization appears to be affected by various factors (immobilization parameters) such as contact time, agitation rate and pH. Therefore, the effect of contact time (6-72 h), agitation rate (50-250 rpm) and pH (3-10) on the immobilization of CGTase on PVDF hollow fiber membrane were investigated in this study. The immobilized CGTase exhibited the highest immobilization yield of 69.37% under the conditions of 24 h contact time, 100 rpm and pH 7.0. Therefore, the influence of the immobilization parameters during the enzyme immobilization process is vital in order to achieve the high production of CD. Hence, high immobilization yield contributed to the high production of CD which in turn may be beneficial for the industrial purposes.

References

Jia, X., X. Ye, J. Chen, X. Lin, L. Vasseur, and M. You. 2018. Purification and Biochemical Characterization of a Cyclodextrin Glycosyltransferase from Geobacillus thermoglucosidans CHB1. Starch-Stärke. 70(1-2): 1700016.

Blanco, K., F. Faria de Moraes, N. Sozza Bernardi, M. Vettori, R. Monti, and J. Contiero. 2014. Cyclodextrin Production by Bacillus lehensis Isolated from Cassava Starch: Characterisation of a Novel Enzyme. Czech J. Food Sci. 32: 48-53.

Ibrahim, A. S. S., Al-Salamah, A. A., El-Toni, A. M., El-Tayeb, M. A. and Elbadawi, Y. B. 2013. Immobilization of Cyclodextrin Glucanotransferase on Aminopropyl-Functionalized Silica-coated Superparamagnetic Nanoparticles. Electron. J. Biotechnol. 16: 10-10.

Voncina, B. and Vivo, V. 2013. Cyclodextrins in Textile Finishing. In M. Gunay (Ed.). Eco-Friendly Textile Dyeing and Finishing. InTech.

Guzik, U., Hupert-Kocurek, K. and Wojcieszyńska, D. 2014. Immobilization as a Strategy for Improving Enzyme Properties-application to Oxidoreductases. Mol. Basel Switz. 19: 8995-9018.

Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F. and Wahab, R. A. 2015. An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes. Biotechnol. Equip. 29: 205-220.

Datta, S., Christena, L. R. and Rajaram, Y. R. S. 2013. Enzyme Immobilization: An Overview on Techniques and Support Materials. Biotech. 3: 1-9.

Homaei, A. A., Sariri, R., Vianello, F. and Stevanato, R. 2013. Enzyme immobilization: An Update. J. Chem. Biol. 6: 185-205.

Rakmai, J., Cheirsilp, B. and Prasertsan, P. 2015. Enhanced Thermal Stability of Cyclodextrin Glycosyltransferase in Alginate–gelatin Mixed Gel Beads and the Application for Β-cyclodextrin Production. Biocatal. Agric. Biotechnol. 4: 717-726.

Matijošytė, I., Arends, I. W. C. E., de Vries, S. and Sheldon, R. A. 2010. Preparation and Use of Cross-linked Enzyme Aggregates (CLEAs) of Laccases. J. Mol. Catal. B Enzym. 62: 142-148.

Arya, S. K. and Srivastava, S. K. 2006. Kinetics of Immobilized Cyclodextrin Gluconotransferase Produced by Bacillus Macerans ATCC 8244. Enzyme Microb. Technol. 39: 507-510.

Carneiro, L. A. B. C., T. A. Costa-Silva, C. R. F. Souza, L. Bachmann, W. P. Oliveira, and S. Said. 2014. Immobilization of Lipases Produced by the Endophytic Fungus Cercospora kikuchii on Chitosan Microparticles. Braz. Arch. Biol. Technol. 57: 578-586.

Ibrahim, A. S. S., El-Tayeb, M. A. and Al-Salamah, A. A. 2010. Characterization of Immobilized Alkaline Cyclodextrin Glycosyltransferase from a Newly Isolated Bacillus agaradhaerens KSU-A11. Afr. J. Biotechnol. 9: 7550-7559.

Shamel, M. M., Ramachandran, K. B., Hasan, M. and Al-Zuhair, S. 2007. Hydrolysis of Palm and Olive Oils by Immobilised Lipase Using Hollow Fibre Reactor. Biochem. Eng. J. 34: 228-235.

Algieri, C., Donato, L., and Giorno, L. 2017. Tyrosinase Immobilized on a Hydrophobic Membrane. Biotechnol. Appl. Biochem. 64(1): 92-99.

Chen, G.-J., C.-H. Kuo, C.-I. Chen, C.-C. Yu, C.-J. Shieh, and Y.-C. Liu. 2012. Effect of Membranes with Various Hydrophobic/hydrophilic Properties on Lipase Immobilized Activity and Stability. J. Biosci. Bioeng. 113: 166-172.

Ouyang, L. D. M. Dotzauer, S. R. Hogg, J. Macanás, J.-F. Lahitte, and M. L. Bruening. Catalytic Hollow Fiber Membranes Prepared Using Layer-by-Layer Adsorption of Polyelectrolytes and Metal Nanoparticles. Catal. Today. 156: 100-106.

Man, R. C., Ismail, A. F., Ghazali, N. F., Fuzi, S. F. Z. M. and Illias, R. M. 2015. Effects of the Immobilization of Recombinant Escherichia Coli on Cyclodextrin Glucanotransferase (CGTase) Excretion and Cell Viability. Biochem. Eng. J. 98: 91-98.

Fontananova, E. et al. 2015. From Hydrophobic to Hydrophilic Polyvinylidene Fluoride (PVDF) Membranes by Gaining New Insight into Material’s Properties. RSC Adv. 5: 56219-56231.

Man, C. R., Fauzi Ismail, A., Fatimah Zaharah Mohd Fuzi, S., Faisal Ghazali, N. and Md Illias, R. 2016. Effects of Culture Conditions of Immobilized Recombinant Escherichia Coli on Cyclodextrin Glucanotransferase (CGTase) Excretion and Cell Stability. Process Biochem. 51: 474-483.

MartıÌn, M. T., Plou, F. J., Alcalde, M. and Ballesteros, A. 2003. Immobilization on Eupergit C of Cyclodextrin Glucosyltransferase (CGTase) and Properties of the Immobilized Biocatalyst. J. Mol. Catal. B Enzym. 21: 299-308.

Matte, C. R. et al. 2017. Physical-chemical Properties of the Support Immobead 150 Before and After the Immobilization Process of Lipase. J. Braz. Chem. Soc. 28: 1430-1439.

Rahim, N. A., S., Sulaiman, A., Halim Ku Hamid, K., Aini Edama, N. and Samsu Baharuddin, A. 2015. Effect of Agitation Speed for Enzymatic Hydrolysis of Tapioca Slurry Using Encapsulated Enzymes in an Enzyme Bioreactor. Int. J. Chem. Eng. Appl. 6: 38-41.

Elibol, M. and Özer, D. 2000. Lipase Production by Immobilised Rhizopus Arrhizus. Process Biochem. 36: 219-223.

Li, T., Li, S., Wang, N. and Tain, L. 2008. Immobilization and Stabilization of Pectinase by Multipoint Attachment onto an Activated Agar-gel Support. Food Chem. 109: 703-708.

Jamil, N., R. C. Man, S. M. Shaarani, S. Z. Sulaiman, S. K. A. Mudalip, and Z. I. M. Arshad. 2017. Characterization of α-Cyclodextrin Glucanotransferase from Bacillus licheniformis. Indian J. Sci. Technol. 10.

Sian, H. K. et al. 2005. Purification and Characterization of Cyclodextrin Glucanotransferase from Alkalophilic Bacillus sp. G1. Process Biochem. 40: 1101-1111.

Lei, Z. and Bi, S. 2007. Preparation and Properties of Immobilized Pectinase onto the Amphiphilic PS-b-PAA Diblock Copolymers. J. Biotechnol. 128: 112-119.

Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M. and Fernandez-Lafuente, R. 2007. Improvement of Enzyme Activity, Stability and Selectivity via Immobilization Techniques. Enzyme Microb. Technol. 40: 1451-1463.

Dwevedi, A. 2016. Basics of Enzyme Immobilization. In Enzyme Immobilization. Springer, Cham. 21-44.

Pang, S., Y. Wu, X. Zhang, B. Li, J. Ouyang, and M. Ding. 2016. Immobilization of Laccase via Adsorption onto Bimodal Mesoporous Zr-MOF. Process Biochem. 51: 229-239.

Ta, L. N. N., Nguyen, T. H. C. and Le, V. V. M. 2016. Immobilization of Saccharomyces Cerevisae Cells on Water Hyacinth Stem Pieces and Application to Repeated Batch Fermentation for Ethanol Production. Songklanakarin J. Sci. Technol. 38: 333-341.

Pal, A. and Khanum, F. 2011. Covalent Immobilization of Xylanase on Glutaraldehyde Activated Alginate Beads Using Response Surface Methodology: Characterization of Immobilized Enzyme. Process Biochem. 46: 1315-1322.

Sivapragasam, M., Abdullah, N., Sivapragasam, M. and Abdullah, N. 2015. Recovery of Cyclodextrin Glucanotransferase (cgtase) using Immobilized Metal Chelating Affinity Chromatography. Braz. J. Chem. Eng. 32: 43-52.

Ajitha, S. and Sugunan, S. 2010. Tuning Mesoporous Molecular Sieve SBA-15 for the Immobilization of α-amylase. J. Porous Mater. 17: 341-349.

Brígida, A. I. S., Pinheiro, A. D. T., Ferreira, A. L. O. and Gonçalves, L. R. B. 2008. Immobilization of Candida Antarctica Lipase B by Adsorption to Green Coconut Fiber. Appl. Biochem. Biotechnol. 146: 173-187.

Sun, J., Jiang, Y., Zhou, L. and Gao, J. 2010. Immobilization of Candida Antarctica Lipase B by Adsorption in Organic Medium. New Biotechnol. 27: 53–58.

Wang, F., Guo, C., Liu, H.-Z. and Liu, C.-Z. 2007. Reversible Immobilization of Glucoamylase by Metal Affinity Adsorption on Magnetic Chelator Particles. J. Mol. Catal. B Enzym. 48: 1-7.

Downloads

Published

2019-12-04

Issue

Section

Science and Engineering

How to Cite

EFFECT OF IMMOBILIZATION PARAMETERS ON THE IMMOBILIZATION OF CYCLODEXTRIN GLUCANOTRANFERASE ON HOLLOW FIBER MEMBRANE. (2019). Jurnal Teknologi, 82(1). https://doi.org/10.11113/jt.v82.13881