THE EFFECT OF PUNCH GEOMETRY ON PUNCHING PROCESS IN TITANIUM SHEET

Authors

  • Yani Kurniawan Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281, Indonesia
  • Muslim Mahardika Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281, Indonesia; Center for Innovation of Medical Equipments and Devices/CIMEDs, Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281, Indonesia
  • Suyitno Suyitno Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281, Indonesia; Center for Innovation of Medical Equipments and Devices/CIMEDs, Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, 55281, Indonesia

DOI:

https://doi.org/10.11113/jt.v82.13947

Keywords:

Punching process, punch geometry, punch force, CP-Ti

Abstract

Reducing punch force, increasing the sheared surface, and improving the work hardening have been real challenges in developing a punching process, and the right selection of punch geometry can resolve these challenges. Selecting the appropriate geometry, however, has been difficult to do since the effect of punch geometry on the punching process is rarely studied, and therefore, this study aims to investigate the effect of punch force, sheared surface, and work hardening by using commercially pure titanium sheets. The punching process under the study employed three different punch geometries, namely flat (FLAT), single shear angle (SSA) and double shear angle (DSA) with a shear angle of 17°, while the Punch velocity used was 35mm/s and 70 mm/s. The results show that the punching process using SSA and DSA punch geometry with the punch velocity of 35 mm/s reduces the punch force by 18% and 13% consecutively compared to that of FLAT with the same velocity. However, the sheared surface quality seems to decline as the rollover height increases by about 48% and 32%. Moreover, the burnish height decreases by 34% and 7% and the resulted work hardening improves by 4.7% and 2.3% respectively. The study concludes that SSA and DSA punch geometry can be best used to reduce punch force and increase work hardening, but apparently fail in increasing the sheared surface quality.

References

Engel, U., & Eckstein, R. 2002. Micro Forming from Basic Research to Its Realization. Journal of Materials Processing Technology. 125-126: 35-44.

Doi: https://doi.org/10.1016/S0924-0136(02)00415-6.

Vollertsen, Niehoff, H. S., & Hu, Z. 2006. State of the Art in Micro Forming. International Journal of Machine Tools and Manufacture. 46(11): 1172-1179.

Doi: https://doi.org/10.1016/j.ijmachtools.2006.01.033.

Colgan, M., & Monaghan, J. 2003. Deep Drawing Process: Analysis and Experiment. Journal of Materials Processing Technology.132(1-3): 35-41

Doi: https://doi.org/10.1016/S0924-0136(02)00253-4.

Yoshihara, S., Manabe, K., & Nishimura, H. 2005. Effect of Blank Holder Force Control in Deep-drawing Process of Magnesium Alloy Sheet. Journal of Materials Processing Technology. 170: 579-585

Doi: https://doi.org/10.1016/j.jmatprotec.2005.06.028

Palumbo, G., & Tricarico, L. 2007. Numerical and Experimental Investigations on the Warm Deep Drawing Process of Circular Aluminum Alloy Specimens. Journal of Materials Processing Technology. 184(1-3): 115-123

Doi: https://doi.org/10.1016/j.jmatprotec.2006.11.024.

Shirin, M. B., Hashemi, R., & Assempour, A. 2018. Analysis of Deep Drawing Process to Predict the Forming Severity Considering Inverse Finite Element and Extended Strain-based Forming Limit Diagram. Journal of Computational and Applied Research in Mechanical Engineering. 8(1): 39-48.

Doi: https://doi.org/10.22061/jcarme.2018.1750.1152.

Irthiea, K., & Green, G. 2017. Evaluation of Micro Deep Drawing Technique Using Soft Die-simulation and Experiments. The International Journal of Advanced Manufacturing Technology. 89(5-8): 2363-2374.

Doi: https://doi.org/10.1007/s00170-016-9167-2.

Aminzahed, I., Mashhadi, M. M., & Sereshk, M. R. V. 2017. Investigation of Holder Pressure and Size Effects Inmicro Deep Drawing of Rectangular Work Pieces Driven by Piezoelectric Actuator. Materials Science and Engineering C. 71: 685-689.

Doi: https://doi.org/10.1016/j.msec.2016.10.068.

Luo, L., Jiang, Z., Wei, D., Manabe, K., Zhao, X., Wu, D., & Furushima, T. 2016. Effects of Surface Roughness on Micro Deep Drawing of Circular Cups with Consideration of Size Effects. Finite Elements in Analysis and Design. 111: 46-55.

Doi: https://doi.org/10.1016/j.finel.2015.11.005.

Behrens, G, Trier, F. O., Tetzel, H., & Vollertsen, F. 2016. Influence of Tool Geometry Variations on the Limiting Drawing Ratio in Micro Deep Drawing. International Journal of Material Forming. 9(2): 253-258.

Doi: https://doi.org/10.1007/s12289-015-1228-9.

Lubis, D. Z., & Mahardika, M. 2016. Influence of Clearance and Punch Velocity on the Quality of Pure Thin Copper Sheet Blanked Parts. IOP Conference Series: Materials Science and Engineering. 157(1): 1-6.

Doi: https://doi.org/10.1088/1757-899X/157/1/012012.

Ristiawan, I., & Mahardika, M. 2017. Effect of Clearance and Punch Speed on the Cutting Surface Quality Results of a Brass Blanking on the Micropunch CNC Machine. AIP Conference Proceedings. 1831(1): 020054-1-020054-9.

Doi: https://doi.org/10.1063/1.4981195.

Maiti, S. K., Ambekar, A. A., Singh, U. P., Date, P. P., & Narasimhan, K. 2000. Assessment of Influence of Some Process Parameters on Sheet Metal Blanking. Journal of Materials Processing Technology. 102(1-3): 249-256.

Doi: https://doi.org/10.1016/S0924-0136(99)00486-0.

Canales, C., Bussetta, P., & Ponthot, J. 2017. On the Numerical Simulation of Sheet Metal Blanking Process. International Journal of Material Forming. 10(1): 55-71.

Doi: https://doi.org/10.1007/s12289-015-1270-7.

Claus, Guy., Weber, M., & Matthias, D. 2017. Increase of Lifetime for Fine Blanking Tools. Procedia Engineering. 183: 45-52.

Doi: https://doi.org/10.1016/j.proeng.2017.04.009.

Xu, J., Guo, B., Shan, D., Wang, C., Li, J., Liu, Y., & Qu, D. 2012. Development of a Micro-forming System for Micro-Punching Process of Micro-hole Arrays in Brass Foil. Journal of Materials Processing Technology. 212(11): 2238-2246.

Doi: https://doi.org/10.1016/j.jmatprotec.2012.06.020.

Tang, Z., Du, H., Lang, L., Jiang, S., Chena, J., & Zhang, J. 2018. Experimental Investigation into the Electropulsing Assisted Punching Process of 2024T4 Aluminum Alloy Sheet. Journal of Materials Processing Technology. 253: 86-98.

Doi: https://doi.org/10.1016/j.jmatprotec.2017.11.011.

Chen, K., Meng, W. J., Mei, F., Hiller, J., & Miller, D. J. 2011. From Micro- to Nano-scale Molding of Metals: Size Effect During Molding of Single Crystal Al with Rectangular Strip Punches. Acta Materialia. 59(3): 1112-1120.

Doi: https://doi.org/10.1016/j.actamat.2010.10.044.

Soares, J. A., Gipiela, M. L., Lajarin, S. F., & Marcondes, P. V. P. 2013. Study of the Punch–die Clearance Influence on the Sheared Edge Quality of Thick Sheets. International Journal of Advance Manufacturing Technology. 65: 451-457. Doi: https://doi.org/10.1007/s00170-012-4184-2.

Larue, A., Ranc, N., Qu, Y. F., Millot, M., Lorong, P., & Lapujoulade, F. 2008. Experimental Study of a High Speed Punching Process. International Journal of Material Forming. 1: 1427-1430.

Doi: https://doi.org/10.1007/s12289-008-0104-2.

Yokoi, T., Shuto, H., Ikeda, K., Nakada, N., Tsuchiyama, T., Ohmura, T., Mine, Y., & Takashima, K. 2016. Quantification of Large Deformation with Punching in Dual Phase Steel and Change of Its Microstructure-part I: Proposal of the Quantification Technique of the Punching Damage of the Dual Phase Steel. ISIJ International. 56(11): 2068-2076.

Doi: https://doi.org/10.2355/isijinternational.ISIJINT-2016-312.

Nakada, N., Ikeda, K., Shuto, H., Yokoi, T., Tsuchiyama, T., Hata, S., Nakashima, H., & Takaki, S. 2016. Quantification of Large Deformation with Punching in Dual Phase Steel and Change of its Microstructure–part ii: Local Strain Mapping of Dual Phase Steel by a Combination Technique of Electron Backscatter Diffraction and Digital Image Correlation Methods. ISIJ International. 56(11): 2077-2083.

Doi: https://doi.org/10.2355/isijinternational.ISIJINT-2016-310.

Mori, K., Saito, S., & Maki, S. 2008. Warm and Hot Punching of Ultra High Strength Steel Sheet. CIRP Annals. 57(1): 321-324.

Doi: https://doi.org/10.1016/j.cirp.2008.03.125.

Mori, K., Maeno, T., & Fuzisaka, S. 2012. Punching of Ultra-high Strength Steel Sheets Using Local Resistance Heating of Shearing Zone. Journal of Materials Processing Technology. 212(2): 534-540.

Doi: https://doi.org/10.1016/j.jmatprotec.2011.10.021.

Mori, K., Maeno, T., & Maruo, Y. 2012. Punching of Small Hole of Die-quenched Steel Sheets using Local Resistance Heating. CIRP Annals. 61(1): 255-258.

Doi : https://doi.org/10.1016/j.cirp.2012.03.124.

Kolleck, R., Vollmer, R., & Veit, R. 2011. Investigation of a Combined Micro-forming and Punching Process for the Realization of Tight Geometrical Tolerances of Conically Formed Hole Patterns. CIRP Annals. 60(1): 331-334.

Doi: https://doi.org/10.1016/j.cirp.2011.03.141.

Singh, U. P., Streppel, A. H., & Kals, H. J. J. 1992. Design Study of the Geometry of a Punching/Blanking Tool. Journal of Materials Processing Technology. 33(4): 331-345.

Doi: https://doi.org/10.1016/0924-0136(92)90270-3.

Gurun, H., Goktas, M., & Guldas, A. 2016. Experimental Examination of Effects of Punch Angle and Clearance on Shearing Force and Estimation of Shearing Force Using Fuzzy Logic. Transactions of Famena XL-3. 40(3): 19-28.

Doi: https://doi.org/10.21278/TOF.40302.

Kutuniva, K., Karjalainen, J. A., & Mantyjarvi, K. 2012. Effect of Convex Sheared Punch Geometry on Cutting Force of Ultra-high-strength Steel. Key Engineering Materials. 504-506: 1359-1364.

Doi: https://doi.org/10.4028/www.scientific.net/KEM.504-506.1359.

Campbell, C. J., & Gill, S. P. A. 2019. An Analytical Model for the Flat Punch Indentation Size Effect. International Journal of Solids and Structures. 171: 81-91.

Doi: https://doi.org/10.1016/j.ijsolstr.2019.05.004.

Guo, W., & Tam, H. Y. 2012. Effects of Extended Punching on Wear of the WC/Co Micropunch and the Punched Microholes. International Journal of Advance Manufacturing Technology. 59(9-12): 955-960.

Doi: https://doi.org/10.1007/s00170-011-3567-0.

Guo, W., & Tam, H. Y., 2013. Influence of the Processing Time on the Finishing of Punched Micro Holes by Planetary Stirring with Natural Sand Grains. Journal of Engineering Manufacture. 227(6): 1-9.

Doi: https://doi.org/10.1177/0954405413476676.

Guo, W, & Tam, H. Y. 2014. Effects of Carbon Nanotubes on Wear of WC/Co Micropunches. International Journal of Advanced Manufacturing Technology. 72(1-4): 269-275.

Doi: https://doi.org/10.1007/s00170-014-5661-6.

Kwak, T. S., Kim, Y. J., & Bae, W. B. 2002. Finite Element Analysis on the Effect of Die Clearance on Shear Planes in Fine Blanking. Journal of Materials Processing Technology. 130-131: 462-468.

Doi: https://doi.org/10.1016/S0924-0136(02)00767-7.

So, H., Fasmann, D., Hoffmann, H., Golle, R., & Schaper, M. 2012. An Investigation of the Blanking Process of the Quenchable Boron Alloyed Steel 22MnB5 Before and After Hot Stamping Process. Journal of Materials Processing Technology. 212(2): 437-449.

Doi: https://doi.org/10.1016/j.jmatprotec.2011.10.006.

Giancoli, D. C. 2014. Physics Principles with Applications. 7th edition. Pearson Prentice Hall.

Gotoh, M., & Yamashita, M. 2001. A Study of High-rate Shearing of Commercially Pure Aluminum Sheet. Journal of Materials Processing Technology. 110(3): 253-264.

Doi: https://doi.org/10.1016/S0924-0136(00)00879-7.

Meng, B., Fu, M. W., Fu, C. M., & Wang, J. L. 2015. Multivariable Analysis of Micro Shearing Process Customized for Progressive Forming of Micro-parts. International Journal of Mechanical Sciences. 93: 191-203.

Doi: https://doi.org/10.1016/j.ijmecsci.2015.01.017.

Callister, W. D. 2001. Fundamentals of Materials Science and Engineering. 5th edition. Wiley.

Roland, T., Retraint, D., Lu, K., & Lu, J. 2007. Enhanced Mechanical Behavior of a Nanocrystallised Stainless Steel and Its Thermal Stability. Materials Science and Engineering A. 445-446: 281-288.

Doi: https://doi.org/10.1016/j.msea.2006.09.041.

Dao, M., Lu, L., Rasaro, R. J., De Hosson, J. T. M., & Ma, E. 2007. Toward a Quantitative Understanding of Mechanical Behaviorof Nanocrystalline Metals. Acta Materialia. 55(12): 4041-4065.

Doi: https://doi.org/10.1016/j.actamat.2007.01.038.

Arifvianto, B., Suyitno, Mahardika, M., Dewo, P., Iswanto, P. T., & Salim, U. A. 2011. Effect of Surface Mechanical Attrition Treatment (SMAT) on Microhardness, Surface Roughness and Wettability of AISI 316L. Materials Chemistry and Physics. 125(3): 418-426.

Doi: https://doi.org/10.1016/j.matchemphys.2010.10.038.

Downloads

Published

2020-02-04

Issue

Section

Science and Engineering

How to Cite

THE EFFECT OF PUNCH GEOMETRY ON PUNCHING PROCESS IN TITANIUM SHEET. (2020). Jurnal Teknologi, 82(2). https://doi.org/10.11113/jt.v82.13947