PEPTIDE EXTRACTS FROM TEMPEH PROTECT AGAINST PHOTOAGING VIA DOWN-REGULATING MATRIX METALLOPROTEINASE-3 GENE EXPRESSION

Authors

  • Steffanus Pranoto Hallis Graduate School of Biotechnology, Atma Jaya Catholic University of Indonesia, 12930, Jakarta, Indonesia
  • Yanti Yanti Department of Food Technology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, 15345, Tangerang, Indonesia
  • Maggy Thenawidjaja Suhartono Department of Food Science and Technology, Faculty of Agricultural Technology, Bogor Agricultural University, 16680, Bogor, Indonesia
  • Soegianto Ali dFaculty of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, 14440, Jakarta, Indonesia

DOI:

https://doi.org/10.11113/jt.v82.13961

Keywords:

Tempeh, peptide extracts, anti-photoaging activity, UVB-induced mice, MMP-3

Abstract

Photoaging damages skin tissue via activation of matrix metalloproteinases (MMPs) and MMP-3 induces activation of MMP-1 and 9. Tempeh is made from fermented soybean in Indonesia and has been known for its high protein content. This study was aimed to investigate the effectiveness of peptide extracts from tempeh against photoaging at gene level in UVB-treated mice. Peptide was extracted from soybean and black soybean tempeh, and identified for its amino acid profiling. Photoaging model was made by gradient UVB exposure to seven groups of mice for 4 weeks. Mice were supplemented with 100 and 300 mg/kg body weight dosages of peptide extracts from soybean and black soybean tempeh. Dorsal skin tissue was collected for histology staining and quantitative polymerase chain reaction (qPCR). This present study found that both tempeh peptide extracts were rich in glutamic acid and branched-chain amino acids. Histology staining showed that tempeh protected mice skin from photoaging. At 100 and 300 mg/kg, both tempeh peptide extracts significantly attenuated MMP-3gene expression that lead to the decrease level of MMP-1 and MMP-9 gene expression. These results suggest that supplementation of both tempeh peptide extracts may possess anti-photoaging effect via altering MMP-3 gene expression in UVB-treated mice.

 

Author Biography

  • Yanti Yanti, Department of Food Technology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, 15345, Tangerang, Indonesia
    Department of Food Technology, Faculty of Biotechnology

References

Mukherjee, S., A. Date, V. Patravale, H. C. Korting, A. Roeder, and G. Weindl. 2006. Retinoids in the Treatment of Skin Aging: An Overview of Clinical Efficacy and Safety. Clinical Interventions in Aging. 1(4): 327-348.

DOI: https://doi.org/10.2147/ciia.2006.1.4.327.

Park, K., and J. H. Lee. 2008. Protective Effects of Resveratrol on UVB Irradiated HaCaTCells through Attenuation of the Caspase Pathway. Oncology Reports. 19(2): 413-417.

DOI: https://doi.org/10.3892/or.19.2.413.

Nichols, J. A., and S. K. Katiyar. 2010. Skin Photoprotection by Natural Polyphenols: Anti-Inflammatory, Antioxidants and DNA Repair Mechanisms. Archives of Dermatological Research. 302(2): 71-83.

DOI: https://doi.org/10.1007/s00403-009-1001-3.

Pandel, R., B. Poljsak, A. Godic, and R. Dahmane. 2013. Skin Photoaging and the Role of Antioxidants in Its Prevention. International Scholarly Research Notices Dermatology. 2013: 930164.

DOI: http://dx.doi.org/10.1155/2013/930164.

Awad, F., et al. 2018. Photoaging and Skin Cancer: Is the Inflammasome the Missing Link? Mechanisms of Ageing and Development. 172: 131-137.

DOI: https://doi.org/10.1016/j.mad.2018.03.003.

Narendhirakannan, R. T., and M. A. C. Hannah. 2013. Oxidative Stress and Skin Cancer: An Overview. Indian Journal of Clinical Biochemistry. 28(2): 110-115.

DOI: https://doi.org/10.1007/s12291-012-0278-8.

Pyun, H. B., M. Kim, J. Park, Y. Sakai, N. Numata, J. Y. Shin, et al. 2012. Effects of Collagen Tripeptide Supplement on Photoaging and Epidermal Skin Barrier in UVB-exposed Hairless Mice. Preventive Nutrition and Food Science. 17(4): 245-253.

DOI: https://doi.org/10.3746/pnf.2012.17.4.245.

Ebner, J., M. Fedorova, A. A. Arslan, and M. Pischetsrieder. 2015. Peptide Profiling of Bovine Kefir Reveals 236 Unique Peptides Released From Caseins During Its Production by Starter Culture or Kefir Grains. Journal of Proteomics. 18(117): 41-57.

DOI: https://doi.org/10.1016/j.jprot.2015.01.005.

Kwon, O. W., R. Venkatesan, M. H. Do, E. H. Ji, D. W. Cho, K. W. Lee, et al. 2014. Dietary Supplementation with a Fermented Barley and Soybean Mixture Attenuates UVB-induced Skin Aging and Dehydration in Hairless Mouse Skin. Food Science and Biotechnology. 24(2): 705-715.

DOI: https://doi.org/10.1007/s10068-015-0092-1.

Papadimitriou, C. G., A. Vafopoulou-Mastrojiannakia, S. V. Silvab, A. Gomesb, F. X. Malcatab, and E. Alichanidisa. 2007. Identification of Peptides in Traditional and Probiotic Sheep Milk Yoghurt with Angiotensin I-Converting Enzyme (ACE)-Inhibitory Activity. Food Chemistry. 105(2): 647-656.

DOI: https://doi.org/10.1016/j.foodchem.2007.04.028.

Boogers, I., et al. 2008. Ultra-performance Liquid Chromatographic Analysis of Amino Acids in Protein Hydrolysates Using an Automated Pre-column Derivatisation Method. Journal of Chromatography A. 1189(1): 406-409.

DOI: https://doi.org/10.1016/j.chroma.2007.11.052.

Kim, H. N., et al. 2016. Anti-photoaging Properties of the Phosphodiesterase 3 Inhibitor Cilostazol in Ultraviolet B-Irradiated Hairless Mice. Scientific Reports. 6(1): 31169.

DOI: https://doi.org/10.1038/srep31169.

Fischer, A. H., K. A. Jacobson, J. Rose, and R. Zeller. 2008. Hematoxylin and Eosin Staining of Tissue and Cell Sections. Cold Spring Harbor Protocols. 4986.

DOI: https://doi.org/10.1101/pdb.prot4986.

Gibson-Corley, K. N.,Olivier A. K., and. Meyerholz, D. K. 2013. Principles for Valid Histopathologic Scoring in Research.Veterinary Pathology. 50(6): 1007-1015.

DOI: https://doi.org/10.1177/0300985813485099.

Zhang, L., Y. Zheng, X. Cheng, M. Meng, Y, Luo, and B. Li. 2017. The Anti-photoaging Effect of Antioxidant Collagen Peptides from Silver Carp (Hypophthalmichthys molitrix) Skin is Preferable to Tea Polyphenols and Casein Peptides. Food & Function. 8(4): 1698-1707.

DOI: https://doi.org/10.1039/c6fo01499b.

Sun, L. P., Y. F. Zhang, and Y. L. Zhuang. 2013. Antiphotoaging Effect and Purification of an Antioxidant Peptide from Tilapia (Oreochromis niloticus) Gelatin Peptides. Journal of Functional Foods. 5(1): 154-162.

DOI: https://doi.org/10.1016/j.jff.2012.09.006.

Venkatesan, J., S. Anil, S. K. Kim, and M. S. Shim. 2017. Marine Fish Proteins and Peptides for Cosmeceuticals: A Review. Marine Drugs. 15(5): 143.

DOI: https://doi.org/10.3390/md15050143.

Petruk, G., R. Del Giudice, M. M. Rigano, and D. M. Monti. 2018. Antioxidants from Plants Protect against Skin Photoaging. Oxidative Medicine and Cellular Longevity. 2018: 1454936.

DOI: https://doi.org/10.1155/2018/1454936.

Bosch, R., N. Philips, J. A. Suárez-Pérez, A. Juarranz, A. Devmurari, J. Chalensouk-Khaosaat, and S. González. 2015. Mechanisms of Photoaging and Cutaneous Photocarcinogenesis, and Photoprotective Strategies with Phytochemicals. Antioxidants (Basel). 4(2): 248-268.

DOI: https://doi.org/10.3390/antiox4020248.

Ngo, D. H., T. S. Vo, D. N. Ngo, I. Wijesekara, and S. K. Kim. 2012. Biological Activities and Potential Health Benefits of Bioactive Peptides Derived from Marine Organisms. International Journal of Biological Macromolecules. 51(4): 378-383.

DOI: https://doi.org/10.1016/j.ijbiomac.2012.06.001.

Kim, M. M., Q. V. Ta, E.Mendis, N. Rajapakse, W. K. Jung, H. G. Byun, et al. 2006. Phlorotanninsin Ecklonia Cava Extract Inhibit Matrix Metalloproteinase Activity. Life Sciences. 79(15): 1436-1443.

DOI: https://doi.org/10.1016/j.lfs.2006.04.022.

Schurink, M., W. J. van Berkel, H. J. Wichers, and C. G. Boeriu. 2007. Novel Peptides with Tyrosinase Inhibitory Activity. Peptides. 28(3): 485-495.

DOI: https://doi.org/10.1016/j.peptides.2006.11.023.

Kim, J. A. and S. K. Kim. 2013. Bioactive Peptides from Marine Sources as Potential Anti-inflammatory Therapeutics. Current Protein and Peptide Science. 14(3): 177-182.

DOI: https://doi.org/10.2174/13892037113149990039.

Choi, Y. L., E. J. Park,E. J. Kim, D. H. Na, and Y. H. Shin. 2014. Dermal Stability and In Vitro Skin Permeation of Collagen Pentapeptides (KTTKS and Palmitoyl-KTTKS). Biomolecules and Therapeutics. 22(4): 321-327.

DOI: https://doi.org/10.4062/biomolther.2014.053.

Murakami, H., K. Shimbo,Y. Inoue, Y.Takino, and H. Kobayashi. 2012. Importance of Amino Acid Composition to Improve Skin Collagen Protein Synthesis Rates in UV-Irradiated Mice. Amino Acids. 42(6):2481-2489.

DOI: https://doi.org/10.1007/s00726-011-1059-z.

Ishibashi, S., T. Ide,and S. Tsurufuji. 1968. Role of Glutamic Acid as a Precursor of Collagen Proline and Hydroxyproline. Biochimica et Biophysica Acta. 165(2): 296-299.

DOI: https://doi.org/10.1016/0304-4165(68)90061-5.

Hou, H., B. Li, X. Zhao, Y. Zhuang, G. Ren, M. Yan, Y. Cai, X. Zhang, and L. Chen. 2009. The Effect of Pacific Cod (Gadus macrocephalus) Skin Gelatin Polypeptides on UV Radiation-induced Skin Photoaging in ICR Mice. Food Chemistry. 115(3): 945-950.

DOI: https://doi.org/10.1016/j.foodchem.2009.01.015.

Chen, T. J., H. Hou, Y. Fan, S. Wang, Q. Chen, L. Si, et al. 2016. Protective Effect of Gelatin Peptides from Pacific Cod Skin against Photoaging by Inhibiting the Expression of MMPs via MAPK Signaling Pathway. Journal of Photochemistry and Photobiology. 165: 34-41.

DOI: https://doi.org/10.1016/j.jphotobiol.2016.10.015.

Poon, F., S. Kang, and A. L. Chien. 2015. Mechanisms and Treatments of Photoaging. Photodermatology, Photoimmunology & Photomedicine. 31(2): 65-74.

DOI: https://doi.org/10.1111/phpp.12145.

Shin, J., J. E. Kim, K. J. Pak. J. I. Kim, S. Y. Lee, I. H. Yeo, et al. 2017. A Combination of Soybean and Haematococcus Extract Alleviates Ultraviolet B-induced Photoaging. International Journal of Molecular Sciences. 18(3):1-13.

DOI: https://doi.org/10.3390/ijms18030682.

Rittié, L. and G. J. Fisher. 2015. Natural and Sun-induced Aging of Human Skin. Cold Spring Harbor Perspectives in Medicine. 5(1): 1-14.

DOI: https://doi.org/10.1101/cshperspect.a015370.

Kahari, V. M. and U. Saarialho-Kere. 1997. Matrix Metalloproteinases in Skin. Experimental Dermatology. 6(5): 199-213.

DOI: https://doi.org/10.1111/j.1600-0625.1997.tb00164.x.

Pittayapruek, P., J. Meephansan, O. Prapapan, M. Komine, and M. Ohtsuki. 2016. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. International Journal of Molecular Sciences. 17(6): 868.

DOI: https://doi.org/10.3390/ijms17060868.

Kwon, H., E. Ahn, S. Y. Kim, Y. Kang, M. O. Kim, B. S. Jin, et al. 2016. Inhibition of UV-induced Matrix Metabolism by AMyristoylTetrapeptide. Cell Biology International. 40(3): 257-268.

DOI: https://doi.org/10.1002/cbin.10557.

Kim, J. M., S. Y. Kim, E. M. Noh, H. K. Song, G. S. Lee, K. B. Kwon, et al. 2018. ReversineInhibits MMP-1 and MMP-3 Expressions by Suppressing of ROS/MAPK/AP-1 Activation in UV-stimulated Human Keratinocytes and Dermal Fibroblasts. Experimental Dermatology. 27(3): 298-301.

DOI: https://doi.org/10.1111/exd.13494.

Lee, T. H., M. H. Do,Y. L. Oh, D. W. Cho, S. H. Kim, and S. Y. Kim. 2014. Dietary Fermented Soybean Suppresses UVB-Induced Skin Inflammation in Hairless Mice via Regulation of the MAPK Signaling Pathway. Journal of Agricultural and Food Chemistry. 62(36): 8962-8972.

DOI: https://doi.org/10.1021/jf5018252.

Hartanti, A. T., G. Rahayu, and I. Hidayat. 2015. RhizopusSpecies from Fresh Tempeh Collected from Several Regions in Indonesia. Hayati Journal of Biosciences. 22(3): 136-142.

DOI: https://doi.org/10.1016/j.hjb.2015.10.004.

Ghosh, D. and T. Konishi. 2007. Anthocyanins and Anthocyanin-rich Extracts: Role in Diabetes and Eye Function. Asia Pacific Journal of Clinical Nutrition. 16(2): 200-208.

DOI: https://doi.org/10.6133/apjcn.2007.16.2.01.

Downloads

Published

2019-12-04

Issue

Section

Science and Engineering

How to Cite

PEPTIDE EXTRACTS FROM TEMPEH PROTECT AGAINST PHOTOAGING VIA DOWN-REGULATING MATRIX METALLOPROTEINASE-3 GENE EXPRESSION. (2019). Jurnal Teknologi, 82(1). https://doi.org/10.11113/jt.v82.13961