SYNTHESIS AND CHARACTERIZATION OF LEAD-FREE PIEZOELECTRIC (K0.5Na0.5)NbO3 PRODUCED WITH IMPROVED CALCINATION TEMPERATURE

Authors

  • Nor Amalina Ahmad Centre for Pre-University Study, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Dzetty Soraya Abdul Aziz Centre for Pre-University Study, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Norni Hidayawati Mat Daud Centre for Pre-University Study, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Rahim Noor Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Amir Azam Khan Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

DOI:

https://doi.org/10.11113/jt.v82.13992

Keywords:

Lead-free piezoelectric, KNN, perovskites, sintering, microstructure

Abstract

Potassium sodium niobate (KNN) is one of the lead free piezoelectric material that catch the attention of researchers and also those in the industrial field because of its stable piezoelectric responses and environmental friendly composition. The recent development of KNN shows that many methods have been used to synthesize the KNN but the stoichiometric Ka0.5Na0.5NbO3 composition is extremely difficult to consolidate. One of the ways to overcome the problem is to precisely pre-calcine and use milling process for proper homogenization followed by natural sintering process. In this paper, attempt has been made to synthesize the KNN produced at 750 oC calcination temperature. The results of 1060oC sintering temperature for 2 hours show a good composition of KNN with orthorhombic crystal structure where the final sintered pellet can reach to a relative density up to 87.13 %.

 

References

Callister, W. D. 2007. Materials Science and Engineering: An Introduction. 7th ed. New York: John Wiley & Sons.

Bhalla, S., Moharana, S., Talakokula, V., & Kaur, N. 2017. Piezoelectric Materials. Applications in SHM, Energy Harvesting and Biomechanics. Hoboken, NJ: John Wiley and Sons, Inc. under licence from Athena Academic Ltd.

Maria, E. V. C., Emilio, M., Armando, R. M., Rodrigo, V. O., Jesue-Alejandro, P. J., Salvador-Oliver, R. L., & Lorena, P. 2016. Towards Lead-free Piezoceramics; Facing a Synthesis Challenge. Journal of Materials. 9(1): 21.

Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nakamura, M. 2004. Lead-free Piezoceramics. International Journal of Science. 432: 84-87.

Youming, Z., Shulin, W., Caifeng, C., Ningyi, Z., Andong, W., Yuan, Z., Feixing, C. 2018. Reduced Hysteresis of KNNS-BNKZ Piezoelectric Ceramics through the Control of Sintering Temperature. Journal of Ceramic International. 44(11): 12435-12441.

Aksel, E., & Jones, J. L. 2010. Advances in Lead-free Piezoelectric Materials for Sensors and Actuators. Sensors. 10(3): 1935-1954.

Janez, B., Andreja, B., Tadej, R., Janez, H., Barbara, M., & Marija, K. 2008. Low-temperature Sintering of K0.5Na0.5NbO3 Ceramics. Journal of Am. Ceram. Soc. 91(7): 2409-2411.

Gaurav, V., Rahul, V. 2014. Selection of Optimal Sintering Temperature of K0.5 Na0.5NbO3 Ceramics for Electromechanical Applications. Journal of Asian Ceramic Societies. 2(1): 5-10.

Dahiyaa, A., & Thakura, O. 2014. Electrical Properties of A-site Substituted Lead-free Potassium Sodium Niobate Ceramics. International Journal of Engineering and Innovative Technology. 3(8): 2008-2010.

Shaohua, Q., Kongjun, Z., Xuming, P., Jing, W., Jinsong, L., & Jinhao, Q. 2013. Influence of Sintering Temperature on Electrical Properties (K0.4425Na0.52Li0..0375)(Nb0.8825Sb0.07Ta0.0475)O3 Ceramics Without Phase Ransition Induced by Sintering Temperature. Journal of Advanced Ceramics. 2(4): 353-359.

Ohbayashi, K. 2016. Piezoelectric Properties and Microstructure of (K,Na)NbO3– KTiNbO5 Composite Lead-free Piezoelectric Ceramic. Piezoelectric Materials.

Thomas, R., Shrout, Shujun. J., Zhang. 2007. Lead-free Piezoelectric Ceramics: Alternatives for PZT? Journal of Electroceramics. 19(1): 113-126.

Evelyn, H., Dragan, D., Nava, S. 2007. Temperature Stability of the Piezoelectric Properties of Li-modified KNN Ceramics. Journal of the European Ceramic Society. 27(13-15): 4093-4097.

Yuhua, Z., Jing-Feng, L. 2006. Normal Sintering of (K,Na)NbO3â€based Ceramics: Influence of Sintering Temperature on Densification, Microstructure, and Electrical Properties. Journal of the American Ceramic Society. 89(12): 3669-3675.

Tadashi, T., Hajime, N. 2005. Current Status and Prospects of Lead-free Piezoelectric Ceramics. Journal of the European Ceramic Society. 25(12): 2693-2700.

Mahdi, F., Touradj, E., Draja, J. 2016. Synthesis and Characterization of Lead-free Piezoelectric (K0.50 Na0.50)NbO3 Powder Produced at Lower Calcination Temperatures: A Comparative Study with a Calcination Temperature of 850 â—¦C. Journal of the European Ceramic Society. 36: 1595-1603.

Barbara, M., Andreja, B., Tadej, R., Marija, K. 2008. Lead-free Piezoelectric Based on Alkaline Niobates: Synthesis, Sintering and Mcrostructure. Journal of Acta Chim. Slov. 55(4):719-726.

Hongliang, D., Zhimin, L., Fusheng, T., Shaobo, Q., Zhibin, P., & Wancheng, Z. 2006. Preparation and piezoelectric properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics with pressure-less sintering. Journal of Material Science and Engineering. 131(1-3): 83-87.

Birol, H., Damjanovic, D., & Setter, N. 2005. Preparation and Characterization of KNbO3 Ceramics. Journal of the American Society. 88(7): 1754-1759.

Danjela, K., Andraz. K., Maja, M., Anton, M., Kristian, R., Janez. K., Barbara, M. 2019. Evolution of Phase Composition and Microstructure of Sodium Potassium Niobate–based Ceramic during Pressure-less Spark Plasma Sintering and Post-annealing. Journal of Ceramic International. 45(8): 10429-10437.

Yang, H., Jun, L., Wenjing, W., You, W., Han, B., Kouzhong, S., Qingxin, M., Zhongxiang, Z., & Dechang, J. 2018. Structure, Electricity, and Bandgap Modulation in Fe2O3-Doped Potassium Sodium Niobite Ceramics. Journal of Ceramics International. 44(13): 16069-16075.

Mahdi, F., Touradj, E., & Darja, J. 2015. Solid-state Sintering of (K0.5Na0.5)NbO3 Synthesized from an Alkali-carbonate-based Low-temperature Calcined Powder. Journal of Material and Technology. 49(6): 975-982.

Peng, Q., Juan, D., & Quozhong, Z. 2011. Sintering and Characterization of (Li, Sb, Ta)-modified (Na, K)NbO3 Lead Free Ceramics. Journal of Physics Research International. 11.

Hana, N., Adel, M., Mohamed, E. M. 2014. Effect of Sintering Temperature on Microstructure and Electrical Properties of Sr1-x(Na0.5Bi0.5)xBi2Nb2O9 Solid Solutions. Journal of Advanced Ceramics. 3(1): 17-30.

Mohammad, R. B., Raziyeh, G., Jae-Shin, L. 2015. Sintering Behavior, Dielectric and Piezoelectric Properties of Sodium Potassium Niobite-based Ceramics Prepared by Single Step and Two-step Sintering. Ceramics International. 41(1): 163-170.

Mahesh, P., Pamu, D. 2015. Raman and Dielectric Studies on Lead Free (K0.5Na0.5) NbO3 Piezoelectric Ceramics. Materials Science and Engineering. 73: 01214.

Downloads

Published

2020-03-01

Issue

Section

Science and Engineering

How to Cite

SYNTHESIS AND CHARACTERIZATION OF LEAD-FREE PIEZOELECTRIC (K0.5Na0.5)NbO3 PRODUCED WITH IMPROVED CALCINATION TEMPERATURE. (2020). Jurnal Teknologi (Sciences & Engineering), 82(2). https://doi.org/10.11113/jt.v82.13992