PROTECTIVE EFFECTS OF VIRGIN COCONUT OIL AND TOCOTRIENOL-RICH FRACTION ON BONE BIOMECHANICS

Authors

  • Mohd Maaruf Abdul Malik Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia http://orcid.org/0000-0002-5676-3715
  • Dina Fariha Che Ab Ghani Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia
  • A'isyah Nabila Uzaimi Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia
  • Ahmad Nazrun Shuid aCDepartment of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.11113/jt.v82.14122

Keywords:

Osteoporosis, virgin coconut oil, tocotrienol-rich fraction, biomechanical strength, three-point bending

Abstract

Osteoporosis is a metabolic disease characterized by low bone mineral density. Both virgin coconut oil (VCO) and tocotrienol-rich fraction (TRF) are known to have higher antioxidant activity. The study aimed to determine the effect of combined therapy of VCO and TRF on biomechanical bone strength parameters of the ovariectomised rat model fed with high fat diet and heated palm oil. Thirty-six female Sprague-Dawley rats were divided into; Sham-operated (SHAM), ovariectomised control (OVX), ovariectomised and given Premarin 64.5 µg/kg (OVX+P), ovariectomised and given VCO 1.43 ml/kg (OVX+V), ovariectomised and given TRF 30 mg/kg (OVX+T) and ovariectomised and given combined therapy of VCO and TRF (OVX+VT). Following 24 weeks, the rats were sacrificed and the right femora were analyzed for three-point bending test using Shimadzu machine (AG-X 500 N). The parameters were divided into two classes: extrinsic (load, displacement and stiffness) and intrinsic (stress, strain and Young modulus). The statistical tests used were analysis of variance (ANOVA), followed by Tukey’s HSD test. The Young modulus value of OVX+VT group was significantly higher than OVX+V and OVX+T groups (p<0.05). Combined therapy of VCO and TRF have offered better bone protective effects than single dose of VCO or TRF in preventing bone loss of osteoporotic rat model. 

References

Lelovas, P. P., T. T. Xanthos, S. E. Thoma, G. P. Lyritis & I. A. Dontas. 2008. The Laboratory Rat as an Animal Model for Osteoporosis Research. Comparative Medicine. 58(5): 424-430. PubMed PMID: 19004367; PubMed Central PMCID: PMC2707131.

Johnell, O and J. A. Kanis. 2006. An Estimate of the Worldwide Prevalence and Disability Associated with Osteoporotic Fractures. Osteoporos Int. 17: 1726.

DOI: 10.1007/s00198-006-0172-4.

Kates, S. L., O. S. Kates and D. A. Mendelson. 2007. Advances in the Medical Management of Osteoporosis. Injury. 38: S17-23.

DOI: 10.1016/j.injury.2007.08.007.

IOF Compendium of Osteoporosi. 1st ed. 2017. Available from: www. iofbonehealth.org.

Kanis, J. A. 1994. Assessment of Fracture Risk and its Application to Screening for Postmenopausal Osteoporosis. Report of a WHO Study Group. Osteoporos Int. 4(6): 368-81.

DOI: 10.1007/bf01622200.

Lim, P. S., F. B. Ong, N. Adeeb, S. S. Seri, Noor–Aini et al. 2005. Bone Health in Urban Midlife Malaysian Women: Risk Factors and Prevention. Osteoporos Int. 16: 2069-79.

DOI: 10.1007/s00198-005-2003-4.

Lee, J. K and A. S. M. Khir. 2007. The Incidence of Hip Fracture in Malaysians above 50 Years of Age: Variation in Different Ethnic Groups. APLAR Journal of Rheumatology.10: 300-305.

DOI: https://doi.org/10.1111/j.1479-8077.2007.00314.x.

Shuid, A. N., L. L. Ping, N. Muhammad, N. Mohamed & I. N. Soelaiman. 2011. The Effects of Labisia pumila var. alata on Bone Markers and Bone Calcium in a Rat Model of Post-menopausal Osteoporosis. Journal of Ethnopharmacology. 133(2): 538-542.

DOI: https://doi.org/10.1016/j.jep.2010.10.033.

Madenci, E., Ş. Güçbey, I. Koca, E. Ibas and H. Çiçek. 2009. Serum Total Oxidative and Antioxidative Status in Patients with Postmenopausal Osteoporosis. Clinical Biochemistry. 42: 4-5.

DOI: https://doi.org/10.1016/j.clinbiochem.2008.09.083.

Deveci, H., G. Nur, H. Cicek & M. Karapehlivan. 2017. Evaluation of Oxidative Stress Factors in Patients with Osteoporosis. Medicine Science. 6: 479-82.

DOI: 10.5455/medscience.2017.06.8597.

Rao, L., N. Kang and A. Rao. 2012. Polyphenol Antioxidants and Bone Health: A Review. Phytochemicals-A Global Perspective of Their Role in Nutrition and Health. IntechOpen. 467-80.

DOI: 10.5772/39287.

Rahal, A., A. Kumar, V. Singh, B. Yadav, R. Tiwari, S. Chakraborty & K. Dhama. 2014. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay. BioMed Research International. 761264.

DOI: 10.1155/2014/761264.

Martin, T. J. & N. A. Sims. 2005. Osteoclast-derived Activity in the Coupling of Bone Formation to Resorption. Trends Mol Med. 11(2): 76-81.

DOI: 10.1016/j.molmed.2004.12.004.

Sims, N. A. & J. H. Gooi. 2008. Bone Remodeling: Multiple Cellular Interactions Required for Coupling of Bone Formation and Resorption. Semin. Cell Dev. Biol. 19(5): 444-51.

DOI: 10.1016/j.semcdb.2008.07.016.

Hofbauer, L. C. et al. 2000. The Roles of Osteoprotegerin and Osteoprotegerin Ligand in the Paracrine Regulation of Bone Resorption. J. Bone Miner. Res. 15: 2-12.

DOI: 10.1359/jbmr.2000.15.1.2.

Shevde, N. K., A. C. Bendixen, K. M. Dienger & J. W. Pike. 2000. Estrogens Suppress RANK Ligandinduced Osteoclast Differentiation via a Stromal Cell Independent Mechanism Involving c-Jun Repression. Proc. Natl. Acad. Sci. USA. 97: 7829-7834.

DOI : 10.1073/pnas.130200197.

Clarke, B. L. & S. Khosla. 2010. Physiology of Bone Loss. Radiol. Radiol Clin North Am. 48(3): 483-95.

DOI: 10.1016/j.rcl.2010.02.014

Li, X., M. S. Ominsky, K. S. Warmington et al. 2009. Sclerostin Antibody Treatment Increases Bone Formation, Bone Mass, and Bone Strength in a Rat Model of Postmenopausal Osteoporosis. J Bone Miner Res. 24: 578.

DOI: https://doi.org/10.1359/jbmr.081206.

Binkley, N., M. Bolognese, A. Sidorowicz-Bialynicka, T. Vally, R. Trout, C. Miller, C. E. Buben, J. P. Gilligan and D. S. Krause. 2012. Oral Calcitonin in Postmenopausal Osteoporosis (ORACAL) Investigators. J Bone Miner Res. 27(8): 1821-9.

DOI: https://doi.org/10.1002/jbmr.1602.

Tella, S. H. & J. C. Gallagher. 2014. Prevention and Treatment of Postmenopausal Osteoporosis. The Journal of Steroid Biochemistry and Molecular Biology. 142: 155-170.

DOI: https://doi.org/10.1016/j.jsbmb.2013.09.008.

An K. C. 2016. Selective Estrogen Receptor Modulators. Asian Spine Journal. 10(4): 787-791.

DOI: https://doi.org/10.4184/asj.2016.10.4.787.

Anderson, G. L., M. Limacher, A. R. Assaf, T. Bassford, S. A. Beresford, et al. 2004. Effects of Conjugation Equine Estrogen in Postmenopausal Women with Hysterectomy: the Women’s Health Initiative Randomized Controlled Trial. JAMA. 291(14): 1701-1712.

DOI: 10.1001/jama.291.14.1701.

Manson, J. E., R. T. Chlebowski, M. L. Stefanick, A. K. Aragaki, J. E. Rossouw, et al. 2013. Menopausal Hormone Therapy and Health Outcomes During the Intervention and Extended Post-stopping Phases of the Women’s Health Initiative Randomized Trials. JAMA. 310(13): 1353-1368.

DOI: 10.1001/jama.2013.278040.

Mohd Effendy, N., S. Abdullah, M. F. M. Yunoh & A. N. Shuid. 2015. Time and Dose-dependent Effects of Labisia pumila on the Bone Strength of Postmenopausal Osteoporosis Rat Model. BMC Complementary and Alternative Medicine. 15(1): 58.

DOI : https://doi.org/10.1186/s12906-015-0567-x.

Pradhan, A. D., J. E. Manson, J. E. Rossouw, D. S. Siscovick, C. P. Mouton, N. Rifai, R. B. Wallace, R. D. Jackson, M. B. Pettinger & P. M. Ridker. 2002. Inflammatory Biomarkers, Hormone Replacement Therapy, and Incident Coronary Heart Disease: Prospective analysis from the Women’s Health Initiative Observational Study. JAMA. 288: 980-987.

DOI: 10.1001/jama.288.8.980.

Wei, M., Z. Yang, P. Li, Y. Zhang and W. C. Sse. 2007. Anti-osteoporosis Activity of Naringin in the Retinoic Acid-induced Osteoporosis Model. Am J Chin Med. 35: 663-667.

DOI: 10.1142/S0192415X07005156.

Abujazia, M. A., N. Muhammad, A. N. Shuid & I. N. Soelaiman. 2012. The Effects of Virgin Coconut Oil on Bone Oxidative Status in Ovariectomised Rat. Evidence-Based Complementary and Alternative Medicine: eCAM. 525079.

DOI: 10.1155/2012/525079

Marina, A. M., Y.B. Che Man and I. Amin. 2009. Virgin Coconut Oil: Emerging Functional Food Oil. Trends in Food Science & Technology. 20(10): 481-487.

DOI: https://doi.org/10.1016/j.tifs.2009.06.003.

Hayatullina, Z., N. Muhammad, N. Mohamed and I. N. Soelaiman. 2012. Virgin Coconut Oil Supplementation Prevents Bone Loss in Osteoporosis Rat Model. Evidence-based Complementary and Alternative Medicine. 237236.

DOI: 10.1155/2012/237236.

Yu, F. L., A. Gapor & W. Bender. 2005. Evidence for the Preventive Effect of the Polyunsaturated Phytol Side Chain in Tocotrienols on 17 β-estradiol Epoxidation. Cancer Detect Prev. 29: 383-388.

DOI: https://doi.org/10.1016/j.cdp.2005.03.003.

Packer, L., S. U. Weber & G. Rimbach. 2001. Molecular Aspects of A-Tocotrienol Antioxidant Action and Cell Signalling. J Nutr. 131: 369-373.

DOI: 10.1093/jn/131.2.369S.

Poljsak, B., D. Å uput & I. Milisav. 2013. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants. Oxidative Medicine and Cellular Longevity. 2013: 956792.

DOI: https://doi.org/10.1155/2013/956792.

Musalmah et al. 2009. Induction of DNA Damage and Cell Death by Beta Amyloid Peptide and Its Modification by Tocotrienol Rich Fraction (TRF). Med & Health. 4(1): 8-15.

DOI: http://journalarticle.ukm.my/1910/.

Hamsi, M., F. Othman, S. Das, Y. Kamisah, Z. Thent and H. Qodriyah et al. 2015. Effect of consumption of fresh and heated virgin coconut oil on the blood pressure and inflammatory biomarkers: An experimental study in Sprague Dawley rats. Alexandria Journal of Medicine. 51(1): 53-63.

DOI : https://doi.org/10.1016/j.ajme.2014.02.002

Nazrun, A. S., A. Khairunnur, M. Norliza, M. Norazlina and S. Ima Nirwana. 2008. Effects of palm tocotrienols on oxidative stress and bone strength in ovariectomised rats. Medicine & Health. 3(2): 247-255. ISSN 1823-2140.

Muhammad, N., D. A. Luke, A. N. Shuid, N. Mohamed & I. N. Soelaiman. 2013. Tocotrienol supplementation in postmenopausal osteoporosis: evidence from a laboratory study. Clinics (Sao Paulo, Brazil). 68(10): 1338-1343.

DOI : 10.6061/clinics/2013(10)08

Elkomy, M. and F. Elsaid. 2015. Anti-osteoporotic effect of medical herbs and calcium supplementation on ovariectomised rats. The Journal of Basic & Applied Zoology. 72: 81-88.

DOI : https://doi.org/10.1016/j.jobaz.2015.04.007

Jepsen, K. J., M. J. Silva, D. Vashishth, X. E. Guo & M. C. van der Meulen. 2015. Establishing biomechanical mechanisms in mouse models: practical guidelines for systematically evaluating phenotypic changes in the diaphyses of long bones. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research. 30(6): 951-966.

DOI : 10.1002/jbmr.2539

Suchacki, K. J. et al. 2017. Skeletal energy homeostasis: a paradigm of endocrine discovery. J. Endocrino. 234: R67-R79.

DOI : 10.1530/JOE-17-0147

Jenneke, K. N., F. M. René, D. B. Astrid and G. B. Rommel. 2015. Bone cell mechanosensitivity, estrogen deficiency, and osteoporosis. Journal of Biomechanics. 48(5): 855-865.

DOI : https://doi.org/10.1016/j.jbiomech.2014.12.007

Manolagas, S. C. 2010. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocrine reviews. 31(3): 266-300.

DOI : 10.1210/er.2009-0024

Abdul-Hamid, S., N. Muhammad and I. N. Mohamed. 2016. The effects of virgin coconut oil on postmenopausal osteoporotic bone: Analyses on osteoblastogenesis and antioxidant genes. Sains Malaysiana. 45(12): 1815-1822.

DOI : https://www.scopus.com/inward/record.uri?eid=2-s2.0-85008221186

Ima-Nirwana, S., M. Wang and A. B. Roshayati et al. 2012. Palm Tocotrienol Supplementation Enhanced Bone Formation in Oestrogen-Deficient Rats. International Journal of Endocrinology. 532862: 7.

DOI : 10.1155/2012/532862

Camargos, G. V., P. Bhattacharya, G. H. van Lenthe, A. A. Del Bel Cury, I. Naert, J. Duyck and K. Vandamme. 2015. Mechanical Competence of Ovariectomy-induced Compromised Bone After Single or Combined Treatment with High-Frequency Loading and Bisphosphonates. Scientific Reports. 5: 10795.

DOI : 10.1038/srep10795

Malik, M., Othman, F., Hussan, F., Shuid, A. N., & Saad, Q. M. 2019. Combined virgin coconut oil and tocotrienol-rich fraction protects against bone loss in osteoporotic rat model. Veterinary world. 12(12): 2052-2060.

DOI : https://doi.org/10.14202/vetworld.2019.2052-2060

Fathilah, S. N., S. Abdullah, N. Mohamed & A. N. Shuid. 2012. Labisia pumila Prevents Complications of Osteoporosis by Increasing Bone Strength in a Rat Model of Postmenopausal Osteoporosis. Evidence-based complementary and alternative medicine: Ecam. 948080.

DOI : 10.1155/2012/948080

Kohno, K, W. Yamada, A. Ishitsuka, M. Sekine, N. Virgona, M. Ota & T. Yano. 2020. Tocotrienol-rich fraction from annatto ameliorates expression of lysyl oxidase in human osteoblastic MG-63 cells. Bioscience, Biotechnology, and Biochemistry. 84(3): 526-535.

DOI : 10.1080/09168451.2019.1693252

Downloads

Published

2020-05-22

Issue

Section

Science and Engineering

How to Cite

PROTECTIVE EFFECTS OF VIRGIN COCONUT OIL AND TOCOTRIENOL-RICH FRACTION ON BONE BIOMECHANICS. (2020). Jurnal Teknologi, 82(4). https://doi.org/10.11113/jt.v82.14122