CHARACTERISATION OF CHOLINESTERASE ACTIVITY FROM ASIAN SWAMP EEL; MONOPTERUS ALBUS, AND TESTING ITS CAPABILITIES AS A BIOSENSOR ON METAL ION CONTAMINATION / PENCIRIAN AKTIVITI KOLINESTERES DARI OTOT BELUT SAWAH; MONOPTERUS ALBUS, DAN PENGUJIAN KEUPAYAANNYA SEBAGAI BIOPENANDA TERHADAP PENCEMARAN ION LOGAM

Authors

  • Siti Aishah Muhammad Khalidi Fakulti Sains dan Sumber Alam, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  • Nureen Nordin Fakulti Sains dan Sumber Alam, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  • Nur Hazrina Nurizan Fakulti Sains dan Sumber Alam, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  • Rahmath Abdulla Fakulti Sains dan Sumber Alam, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  • Mohd Yunus Shukor Jabatan Biokimia, Fakulti Bioteknologi dan Sains Biomolekul, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • Siti Aqlima Ahmad Jabatan Biokimia, Fakulti Bioteknologi dan Sains Biomolekul, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • Mohd Rosni Sulaiman Fakulti Sains Makanan dan Pemakanan, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  • Mohd Khalizan Sabullah Fakulti Sains dan Sumber Alam, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

DOI:

https://doi.org/10.11113/jt.v82.14175

Keywords:

Pollution, metal ions, biosensor, cholinesterase, optimal assay

Abstract

The presence of high concentrations of heavy metals in the river impedes daily activities and damages the surrounding aquatic ecosystem. Continuous monitoring should be implemented to prevent continuous discharge resulting in increased levels of pollution over time. This study aims to determine the sensitivity of Monopterus albus muscle ChE to metal ions. Priorly, ChE was purified from M. albus muscle tissue using the ion exchange matrix, DEAE, with the yield percentage of 42.16% with the purification fold of 2.17. PTC was selected as a specific synthetic substrate with the highest concentration and lowest biomolecular constant at 145838 ± 7533 μM.min.-1mg.-1 and 0.26 mM, while optimal assay parameters were obtained at pH 7.5 at 20 ° C. Inhibition studies of metal ions involving Cr, Cd, Ag, As, Hg, Pb, Ni and Cu at the concentration of 10 mg/L. The activity of M. albus ChE was 56.61% inhibited by Hg2+ and the highest recorded compared to the other metals ion arranged in declining order; Cr <Cd = Ni <Cu <Pb <As <Ag. Overall, purified ChE from M. albus muscle has proven its ability to be applied as a biosensor that can be used for environmental monitoring programs.

Author Biography

  • Mohd Khalizan Sabullah, Fakulti Sains dan Sumber Alam, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
    Biotechnology programme

References

Jabatan Alam Sekitar Malaysia. Kualiti Air Sungai. Bab 2. Pengawasan Kualiti Air Sungai. http://www.doe.gov.my/portalv1/wp-content/uploads/2018/09/iv-EQR2016.pdf.

Basirun, A. A., Ahmad, S. A., Yasid, N. A., Sabullah, M. K., Daud, H. M., Sha’arani, S., Khalid, A. and Shukor, M. Y. 2018. Toxicological Effects and Behavioural and Biochemical Responses of Oreochromis Mossambicus Gills and Its Cholinesterase to Copper: A Biomarker Application. International Journal of Environmental Science and Technology. 16(2): 887-898.

DOI: http://dx.doi.org/10.1007/s13762-018-1711-1.

Otto, C. C., Koehl, J. L., Solanky, D., and Haydel, S. E. 2014. Metal Ions, Not Metal-Catalyzed Oxidative Stress, Cause Clay Leachate Antibacterial Activity. PLOS ONE. 9: e115172.

DOI: http://dx.doi.org/10.1371/journal.pone.0115172.

Espart, A., Artime, S., Tort-Nasarre, G., and Yara-Varón, E. 2018. Cadmium Exposure During Pregnancy and Lactation: Materno-fetal and Newborn Repercussions of Cd[II], and Cd–metallothionein Complexes. Metallomics. 10(10): 1359-1367.

DOI: http://dx.doi.org/10.1039/C8MT00174J.

Sabullah, M. K., Ahmad, S. A., Shukor, M. Y., Gansau, A. J., Syed, M. A., Sulaiman, M. R. and Shamaan, N. A. 2015. Heavy Metal Biomarker: Fish Behavior, Cellular Alteration, Enzymatic Reaction and Proteomics Approaches. International Food Research Journal. 22(2): 435-454.

Sabullah, M. K., Sulaiman, M. R., Shukor, M. S., Yusof, M. T., Johari, W. L. W., Shukor, M. Y. and Syahir, A. 2015. Heavy Metals Biomonitoring via Inhibitive Assay of Acetylcholinesterase from Periophthalmodon schlosseri. Rendiconti Lincei. 26(2): 151-158.

DOI: http://dx.doi.org/10.1007/s12210-014-0359-0.

Shukor, M. Y., Tham, L. G., Halmi, M. I. E., Khalid, I., Begum, G., Shukor, M. Y. and Syahir, A. 2013. Development of an Inhibitive Assay Using Commercial Electrophorus Electricus Acetylcholinesterase for Heavy Metal Detection. Journal of Environmental Biology. 34(5): 967-970.

Baskaran, G., Masdor, N. A., Syed, M. A., and Shukor, M. Y. 2013. An Inhibitive Enzyme Assay to Detect Mercury and Zinc Using Protease from Coriandrum sativum. The Scientific World Journal. 2013: 678356.

DOI: http://dx.doi.org/10.1155/2013/678356.

Ilangovan, R., Daniel, D., Krastanov, A., Zachariah, C., and Elizabeth, R. 2006. Enzyme based Biosensor for Heavy Metal Ions Determination. Biotechnology & Biotechnological Equipment. 20(1): 184-189.

DOI: http://dx.doi.org/10.1080/13102818.2006.10817330.

Aidil, M. S., Sabullah, M. K., Halmi, M. I., Sulaiman, R., Shukor, M. S., Shukor, M. Y., Shaharuddin, N. A., Syed, M. A. and Amir Hamzah, A. S. 2013. Assay for Heavy Metals Using an Inhibitive Assay based on the Acetylcholinesterase from Pangasius hypophthalmus [Sauvage, 1878]. Fresenius Environmental Bulletin. 22(12): 3572-3576.

Hayat, N. M., Shamaan, N. A., Sabullah, M. K., Shukor, M. Y., Syed, M. A., Khalid, A., Dahalan, F. A. and Ahmad, S. A. 2016. The Use of Lates calcarifer as a Biomarker for Heavy Metals Detection. Rendiconti Lincei. 27(3): 463-472.

DOI: http://dx.doi.org/10.1007/s12210-015-0501-7.

Ahmad, S. A., Wong, Y. F., Shukor, M. Y., Sabullah, M. K., Yasid, N. A., Hayat, N. M., Shamaan, N. A., Khalid, A. and Syed, M. A. 2016. An alternative Bioassay using Anabas testudineus [Climbing perch] Colinesterase for Metal Ions Detection. International Food Research Journal. 23(4): 1446-1452.

Ellman, G. L., Courtney, K. D., Andres, V., and Featherstone, R. M. 1961. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochemical Pharmacology. 7(2): 88-95.

DOI: http://dx.doi.org/10.1016/0006-2952[61]90145-9.

Bradford, M. M. 1976 A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding. Analytical Biochemistry. 72(1-2): 248-254.

DOI: http://dx.doi.org/10.1006/abio.1976.9999.

Berg, J. M., Tymoczko, J. L., and Stryer, L. 2002. The Purification of Proteins Is an Essential First Step in Understanding Their Function. Biochemistry. 5th edition.

Tecles, F., and Cerón, J. J. 2001. Determination of Whole Blood Cholinesterase in Different Animal Species Using Specific Substrates. Research in Veterinary Science. 70: 233-238.

DOI: http://dx.doi.org/10.1053/rvsc.2001.0465.

Sabullah, M. K., Sulaiman, M. R., Shukor, M. Y. A., Syed, M. A., Shamaan, N. A., Khalid, A. and Ahmad, S. A .2014. The Assessment of Cholinesterase from the Liver of Puntius javanicus as Detection of Metal Ions. The Scientific World Journal. 2014: ID571094.

DOI: http://dx.doi.org/10.1155/2014/571094.

Hayat, N. M., Ahmad, S. A., Shamaan, N. A., Sabullah, M. K., Shukor, M. Y., Syed, M. A., Khalid, A., Khalil, K. A. and Dahalan, F. A. 2017. Characterisation of Cholinesterase from Kidney Tissue of Asian Seabass [Lates calcarifer] and Its Inhibition in Presence of Metal Ions. Journal of Environmental Biology. 38(3): 383-388.

DOI: http://dx.doi.org/10.22438/jeb/38/3/MRN-987.

Li, S., and Hong, M. 2011. Protonation, Tautomerization, and Rotameric Structure of Histidine: A Comprehensive Study by Magic-angle-spinning Solid-state NMR. Journal of the American Chemical Society. 133: 1534-1544.

DOI: http://dx.doi.org/10.1021/ja108943n.

Khalidi, S. A. M., Sabullah, M. K., Sani, S. A., Ahmad, S. A., Shukor, M. Y., Jaafar, I. N. M. and Gunasekaran, B. 2019. Acetylcholinesterase from the Brain of Monopterus Albus as Detection of Metal Ions. Journal of Physics: Conference Series. 1358: 012028.

Vieira, L. R., Gravato, C., Soares, A. M. V. M., Morgado, F., and Guilhermino, L. 2009. Acute Effects of Copper and Mercury on the Estuarine Fish Pomatoschistus Microps: Linking Biomarkers to Behaviour. Chemosphere. 76: 1416-1427.

DOI: http://dx.doi.org/10.1016/j.chemosphere.2009.06.005.

Yamauchi, O., Odanib, A. and Takanic, M. 2002. Metal-amino Acid Chemistry. Weak Interactions and Related Functions of Side Chain Groups. Journal of the Chemical Society, Dalton Transactions. 24: 4527-4754.

https://doi.org/10.1039/B202385G.

Downloads

Published

2020-08-17

Issue

Section

Science and Engineering

How to Cite

CHARACTERISATION OF CHOLINESTERASE ACTIVITY FROM ASIAN SWAMP EEL; MONOPTERUS ALBUS, AND TESTING ITS CAPABILITIES AS A BIOSENSOR ON METAL ION CONTAMINATION / PENCIRIAN AKTIVITI KOLINESTERES DARI OTOT BELUT SAWAH; MONOPTERUS ALBUS, DAN PENGUJIAN KEUPAYAANNYA SEBAGAI BIOPENANDA TERHADAP PENCEMARAN ION LOGAM. (2020). Jurnal Teknologi (Sciences & Engineering), 82(5). https://doi.org/10.11113/jt.v82.14175