CARBON DIOXIDE/METHANE SEPARATION PERFORMANCE BY MIXED MATRIX MEMBRANE FROM POLYSULFONE/ HALLOYSITE NANOTUBES

Authors

  • Noor Maizura Ismail Faculty of Engineering, UMS, 88400, Kota Kinabalu, Sabah, Malaysia
  • Nur Afaliza Yusaini Faculty of Engineering, UMS, 88400, Kota Kinabalu, Sabah, Malaysia
  • Jannah Jafa Faculty of Engineering, UMS, 88400, Kota Kinabalu, Sabah, Malaysia
  • S. M. Anisuzzaman Faculty of Engineering, UMS, 88400, Kota Kinabalu, Sabah, Malaysia
  • Chiam Chel Ken Faculty of Engineering, UMS, 88400, Kota Kinabalu, Sabah, Malaysia
  • Nurmin Bolong Faculty of Engineering, UMS, 88400, Kota Kinabalu, Sabah, Malaysia
  • Akhtar Razul Razali Faculty of Mechanical and Manufacturing Engineering, UMP, 26600, Pekan, Pahang, Malaysia
  • Ahmad Fauzi Ismail Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v82.14309

Keywords:

Mixed matrix membranes, polysulfone, halloysite nanotubes, 3-APTES, gas permeation

Abstract

Gas separation by using membrane-based technology is one of the rising technologies used in the industry. It has many advantages such as low in cost and energy consumption. However, this technology is limited because of the "trade-off" exists between permeability and selectivity of the membrane. Thus, in this study, an inorganic filler, halloysite nanotube is modified with 3-aminopropyl(triethoxysilane) and then incorporated into the polysulfone polymer and the performance of the mixed matrix membranes (MMMs) is investigated. MMMs were analyzed by using SEM, FTIR, tensile and gas permeation tests which studied the morphological differences, mechanical strength, and membrane permeability and selectivity towards CO2 and CH4 respectively. The performance of the MMMs was compared with neat membrane and MMMs with unmodified HNTs. SEM results show an increase of 111% on the thickness of the dense skin layer of MMMs with APTES-modified HNTs compared to the neat membrane and the MMMs with unmodified HNTs. Elongation at break for MMMs with 3-APTES-modified HNTs also increased to 24.22%. The gas separation performance of the MMMs with 3-APTES modified HNTs shows an overall increase of 25.37% in the membrane selectivity compared to MMMs with unmodified HNTs while when coating is done, the selectivity of the MMMs with 3-APTES modified HNTs shows an increase from 0.845 to 10.158 for a pressure of 2 bar showing that coating helps in increasing the selectivity of the membrane.

Author Biography

  • Noor Maizura Ismail, Faculty of Engineering, UMS, 88400, Kota Kinabalu, Sabah, Malaysia

    Senior Lecturer,

    Chemical Engineering Department,

    FKJ, UMS

References

Lal, B., Shariff, A. M., Mukhtar, H., Nasir, Q., & Qasim, A. 2018. An Overview of Cryogenic Separation Technique for Natural Gas with High CO2 Content. Journal of Engineering and Applied Sciences. 13(8): 2152-2155.

DOI: https://doi.org/10.3923/jeasci.2018.2152.2155.

Rezakazemi, M., Amooghin, A. E., Montazer-rahmati, M., Ismail, A. F., & Matsuura, T. 2014. State-of-the-art Membrane based CO2 Separation Using Mixed Matrix Membranes: An Overview on Current Status and Future Directions. Progress in Polymer Science. 39(5): 817-861.

DOI: https://doi.org/10.1016/j.progpolymsci.2014.01.003.

Zhang, Y., Sunarso, J., Liu, S., & Wang, R. 2013. Current Status and Development of Membranes for CO2/CH4 Separation: A Review. International Journal of Greenhouse Gas Control. 12: 84-107.

DOI: https://doi.org/10.1016/j.ijggc.2012.10.009.

Jusoh, N., Lau, K.K., &Shariff, A. M. 2014. Preparation and Characterization of Polysulfone Membrane for Gas Separation. Advanced Material Research. 917: 307-316.

DOI: https://doi.org/10.4028/www.scientific.net/AMR.917.307.

Shimekit, B., Mukhtar, H. 2012. Natural gas Purification Technologies: Major Advances for CO2 Separation and Future Directions. In Advances in Natural Gas Technology 2012. Pp. 235-270.

DOI: https://doi.org/10.1142/9789813207714_0001.

Carreon, M., Dahe, G., Feng, J., & Venna, S. R. 2017. Mixed Matrix Membranes for Gas Separation Applications. In Membranes for Gas Separations. Pp. 1-57.

DOI: https://doi.org/10.1142/9789813207714_0001.

Ismail, N. M., Jakariah, N. R., Bolong, N., Anissuzaman, S. M., Nordin, N. A. H. M., & Razali, A. R. 2017. Effect of Polymer Concentration on the Morphology and Mechanical Properties of Asymmetric Polysulfone (PSf) Membrane. Journal of Applied Membrane and Science Technology. 21(1): 33-41.

DOI: https://doi.org/10.11113/amst.v21i1.107.

Carli, L. N., Daitx, T. S., Soares, G. V., Crespo, J. S., & Mauler, R. S. 2013. The Effect of Silane Coupling Agents on the Properties of PHBV/halloysite Nanocomposites. Applied Clay Science. 87:311-319.

DOI: https://doi.org/10.1016/j.clay.2013.11.032.

Murali, R. S., Padaki, M., Matsuura, T., Abdullah, M. S., & Ismail, A. F. 2014. Polyaniline in-situ Modified Halloysite Nanotubes Incorporated Asymmetric Mixed Matrix Membrane for Gas Separation. Separation and Purification Technology. 132: 187-194.

DOI: https://doi.org/10.1016/j.seppur.2014.05.020.

Ismail, N. M., Ismail, A. F., & Mustaffa, A. 2014. Characterization of Polyethersulfone/Cloisite Membrane for CO2/CH4 Separation. Jurnal Teknologi. 9: 83-87.

DOI: https://doi.org/10.1016/j.colsurfa.2006.10.054.

Zulhairun, A. K., Ismail, A. F., Matsuura, T., Abdullah, M. S., Mustaffa, A. 2014. Asymmetric Mixed Matrix Membrane Incorporating Organically Modified Clay Particle for Gas Separation. Chemical Engineering Journal. 241: 495-503.

DOI: https://doi.org/10.1016/j.cej.2013.10.042.

Fadaly, N. S., and Aziz, F. 2018. Preparation and Characterization of Mixed Matrix Membrane based on Polysulfone (PSf) and Lanthanum Orthoferrite (LaFeO3). Jurnal Teknologi. 1-7.

Hashemifard, S. A., Ismail, A. F., & Matsuura, T. 2011. Effects of Montmorillonite Nano-clay Fillers on PEI Mixed Matrix Membrane for CO2 Removal. Chemical Engineering Journal. 170(1): 316-325.

DOI: https://doi.org/10.1016/j.cej.2011.03.063.

Naimah, N., Ahmad, R., Mukhtar, H., Mohshim, D.F., & Nasir, R. 2016. Surface Modification in Inorganic Filler of Mixed Matrix Membrane for Enhancing the Gas Separation Performance. Reviews in Chemical Engineering. 32(2): 181-200.

DOI: https://doi.org/10.1515/revce-2015-0031.

Yuan, P., Souhton, P. D., Liu, Z., Green, M. E. R., Hook, J. M., Antill, S. J., & Kepert, C. J. 2008. Functionalization of Halloysite Clay Nanotubes by Grafting with γ -Aminopropyltriethoxysilane. Journal of Physical Chemistry C. 112: 15742-15751.

DOI: https://doi.org/10.1021/jp805657t.

Ge, L., Lin, R., Wang, L., Rufford, T. E., Villacorta, B., Liu, S., Liu, L. X., Zhu, Z. 2017. Surface-etched Halloysite Nanotubes in Mixed Matrix Membranes for Efficient Gas Separation. Separation and Purification. 173: 63-71.

DOI: https://doi.org/10.1016/j.seppur.2016.09.015.

Qin, L., Zhao, Y., Liu, J., Hou, J., Zhang, Y., Wang, J., Zhu, J., Zhang, B., Lvov, Y. M., & Bruggen, B. V. D. 2016. Oriented Clay Nanotubes Membrane Assembled on Microporous Polymeric Substrates. Applied Materials and Interfaces. 8(50): 34914-34923.

DOI: https://doi.org/10.1021/acsami.6b12858.

Zhu, J., Guo, N., Zhang, Y., Yu, L., Liu, J. 2014. Preparation and Characterization of Negatively Charged PES Nanofiltration Membrane by Blending with Halloysite Nanotubes Grafted with Poly(Sodium 4-Styrenesulfonate) via Surface-Initiated ATRP. Journal of Membrane Science. 465: 91-99.

DOI: https://doi.org/10.1016/j.memsci.2014.04.016.

Suleman, M. S., Lau, K. K. & Yeong, Y. F. 2018. Enhanced Gas Separation Performance of PSF Membrane After Modification to PSF/PDMS Composite Membrane in CO2/CH4 Separation. Journal of Applied Polymer Science. 135(1): 1-9.

DOI: https://doi.org/10.1002/app.45650.

Villakati, G. D., Hoek, E. M. V., & Mamba, B. B. 2014. Probing the Mechanical and Thermal Properties of Polysulfone Membranes Modified with Synthetic and Natural Polymer Additives. Polymer Testing. 34: 202-210.

DOI: https://doi.org/10.1016/j.polymertesting.2014.01.014.

Yang, Y., Chuah, C. Y., Nie, L. & Bae, T. H. 2019. Enhancing the Mechanical Strength and CO2/CH4 Separation Performance of Polymeric Membranes by Incorporating Amine-appended Porous Polymers. Journal of Membrane Science. 569: 149-156.

DOI: https://doi.org/10.1016/j.memsci.2018.10.018.

Jomekian, A., Pakizeh, M., Shafiee, A. R., & Mansoori, S. A. A. 2011. Fabrication or Preparation and Characterization of New Modified MCM-41/PSf Nanocomposite Membrane Coated by PDMS. Separation and Purification Technology. 80(3): 556-565.

DOI: https://doi.org/10.1016/j.seppur.2011.06.011.

Zulhairun, A. K., Fachrurrazi, Z. G., Izwanne, M. N., & Ismail A. F. 2015. Asymmetric Hollow Fiber Membrane Coated with Polydimethylsiloxane-metal Organic Framework Hybrid Layer for Gas Separation. Separation and Purification Technology. 146: 85-93.

DOI: https://doi.org/10.1016/j.seppur.2015.03.033.

Saedi, S., Madaeni, S. S., & Shamsabadi, A. A. 2014. PDMS Coated Asymmetric PES Membrane for Natural Gas Sweetening: Effect of Preparation and Operating Parameters on Performance. Canadian Journal of Chemical Engineering. 92(5): 892-904.

DOI: https://doi.org/10.1002/cjce.21947.

Downloads

Published

2020-04-23

Issue

Section

Science and Engineering

How to Cite

CARBON DIOXIDE/METHANE SEPARATION PERFORMANCE BY MIXED MATRIX MEMBRANE FROM POLYSULFONE/ HALLOYSITE NANOTUBES. (2020). Jurnal Teknologi, 82(3). https://doi.org/10.11113/jt.v82.14309