NARX NETWORK BASED DATA-DRIVEN ALGORITHM FOR DETECTION OF TRAY FAULTS IN NONLINEAR DYNAMIC DISTILLATION COLUMN
DOI:
https://doi.org/10.11113/jt.v82.14350Keywords:
NARX network, data driven, fault detection, distillation column, Aspen PlusAbstract
Efficient monitoring of highly complex process industries is essential for better management, safer operations and high-quality production. Timely detection of various faults helps to improve the performance of the complex industries, prevent various unfavorable consequences and reduce the maintenance cost. Fault Detection and Diagnosis (FDD) for process monitoring and control has been an active field of research for the past two decades. Distillation columns are inherently nonlinear, and thus to have an accurate and robust performance, the fault detection methods should be based on nonlinear dynamic methods. The paper presents a robust data-driven fault detection approach for realistic tray upsets in the distillation column. The detection of tray faults in the distillation column is conducted by Nonlinear AutoRegressive with eXogenous Input (NARX) network with Tapped Delay Lines (TDL). Aspen Plus® Dynamic simulation has been used to generate normal and faulty datasets. The study shows that the proposed method can be used for the detection of tray faults in distillation column for dynamic process monitoring. The performance of the proposed method has been evaluated by the Missed Detection Rate (MDR) and the Detection Delay (DD).
References
Z. Ge. 2014. Improved Two-level Monitoring System for Plant-wide Processes. Chemometrics and Intelligent Laboratory Systems. 132: 141-151.
Z. Ge. 2017. Review on Data-driven Modeling and Monitoring for Plant-wide Industrial Processes. Chemometrics and Intelligent Laboratory Systems. 171: 16-25.
L. H. Chiang, E. L. Russell, and R. D. Braatz. 2000. Fault Detection and Diagnosis in Industrial Systems. Springer Science & Business Media.
S. A. Taqvi, L. D. Tufa, H. Zabiri, A. S. Maulud, and F. Uddin. 2018. Fault Detection in Distillation Column Using NARX Neural Network. Neural Computing and Applications. 1-17.
S. A. Taqvi, L. D. Tufa, and S. Muhadizir. 2016. Optimization and Dynamics of Distillation Column Using Aspen Plus®," Procedia Engineering. 148: 978-984.
S. A. Fatima, H. Zabiri, S. A. A. Taqvi, and N. Ramli. 2019. System Identification of Industrial Debutanizer Column. 2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE). 178-183.
S. A. Taqvi, L. D. Tufa, H. Zabiri, A. S. Maulud, and F. Uddin. 2018. Multiple Fault Diagnosis in Distillation Column Using Multikernel Support Vector Machine. Industrial & Engineering Chemistry Research. 57: 14689-14706.
S. A. A. Taqvi, H. Zabiri, L. D. Tufa, S. A. Fatima, and A. H. S. Maulud. 2019. Distillation Column: Review of Major Disturbances. 2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE). 168-171.
R. Ellingsen. 1986. Diagnosing and Preventing Tray Damage in Distillation Columns. IFAC Proceedings Volumes. 19: 37-42.
M. Alauddin, F. Khan, S. Imtiaz, and S. Ahmed. 2018. A Bibliometric Review and Analysis of Data-driven Fault Detection and Diagnosis Methods for Process Systems. Industrial & Engineering Chemistry Research. 57:10719-10735.
R. Isermann. 2006. Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer Science & Business Media.
K. Tidriri, N. Chatti, S. Verron, and T. Tiplica. 2016. Bridging Data-driven and Model-based Approaches for Process Fault Diagnosis and Health Monitoring: A Review of Researches and Future Challenges. Annual Reviews in Control. 42: 63-81.
V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and K. Yin. 2003. A Review of Process Fault Detection and Diagnosis: Part III: Process History Based Methods. Computers & Chemical Engineering. 27: 327-346.
V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and K. Yin. 2003. A Review of Process Fault Detection and Diagnosis Part I: Quantitative Model-based Methods. Computers & Chemical Engineering. 27: 293-311.
R. Isermann. 2005. Model-based Fault-detection and Diagnosis–status and Applications. Annual Reviews in Control. 29: 71-85.
S. Rubab, S. A. Taqvi, and M. F. Hassan. 2018. Realizing the Value of Big Data in Process Monitoring and Control: Current Issues and Opportunities. International Conference of Reliable Information and Communication Technology. 128-138.
S. Joe Qin. 2003. Statistical Process Monitoring: Basics and Beyond. Journal of Chemometrics: A Journal of the Chemometrics Society. 17:480-502.
S. X. Ding, P. Zhang, T. Jeinsch, E. Ding, P. Engel, and W. Gui. 2011. A Survey of the Application of Basic Data-driven and Model-based Methods in Process Monitoring and Fault Diagnosis. Proceedings of the 18th IFAC World Congress. 12380-12388.
Y. Chetouani. 2011. Detecting Changes in a Distillation Column by Using a Sequential Probability Ratio Test. Systems Engineering Procedia. 1: 473-480.
Z. Ge, Z. Song, S. X. Ding, and B. Huang. 2017. Data Mining and Analytics in the Process Industry: The Role of Machine Learning. IEEE Access. 5: 20590-20616.
M. A. A. Rad and M. J. Yazdanpanah. 2015. Designing Supervised Local Neural Network Classifiers Based on EM Clustering for Fault Diagnosis of Tennessee Eastman Process. Chemometrics and Intelligent Laboratory Systems. 146: 149-157.
U. Kruger, X. Wang, Q. Chen, and S. Qin. 2001. An Alternative PLS Algorithm for the Monitoring of Industrial Process. American Control Conference, 2001. Proceedings of the 2001. 4455-4459.
G. Li and Y. Hu. 2019. An Enhanced PCA-based Chiller Sensor Fault Detection Method Using Ensemble Empirical Mode Decomposition Based Denoising. Energy and Buildings. 183: 311-324.
A. Kumar, A. Bhattacharya, and J. Flores-Cerrillo. 2020. Data-driven Process Monitoring and Fault Analysis for Reformer Units in Hydrogen Plants: Industrial Application and Perspectives. Computers & Chemical Engineering. 106756.
S. A. Taqvi, L. D. Tufa, H. Zabiri, S. Mahadzir, A. S. Maulud, and F. Uddin. 2017. Artificial Neural Network for Anomalies Detection in Distillation Column. Asian Simulation Conference. 302-311.
N. B. Shaik, S. R. Pedapati, S. A. A. Taqvi, A. Othman, and F. A. A. Dzubir. 2020. A Feed-forward Back Propagation Neural Network Approach to Predict the Life Condition of Crude Oil Pipeline. Processes. 8: 661.
A. A. A. M. Amiruddin, H. Zabiri, S. A. A. Taqvi, and L. D. Tufa. 2020. Neural Network Applications in Fault Diagnosis and Detection: An Overview of Implementations in Engineering-related Systems. Neural Computing and Applications. 1-26.
N. M. Nor, M. A. Hussain, and C. R. C. Hassan. 2017. Fault Diagnosis and Classification Framework Using Multi-scale Classification Based on Kernel Fisher Discriminant Analysis for Chemical Process System. Applied Soft Computing. 61: 959-972.
M. T. Amin, F. Khan, and S. Imtiaz. 2019. Fault Detection and Pathway Analysis Using a Dynamic Bayesian Network. Chemical Engineering Science. 195: 777-790.
C. Lau, K. Ghosh, M. Hussain, and C. C. Hassan. Provide year. Fault Diagnosis of Tennessee Eastman Process with Multi-scale PCA and ANFIS. Chemometrics and Intelligent Laboratory Systems. 120: 1-14.
Y. Chetouani. 2007.Using Artificial Neural Networks for the Modelling of a Distillation Column. IJCSA. 4: 119-133.
I. Loboda and M. A. O. Robles. 2015. Gas Turbine Fault Diagnosis using Probabilistic Neural Networks. International Journal of Turbo & Jet-Engines. 32: 175-191.
T. Sorsa, H. N. Koivo, and H. Koivisto. 1991. Neural Networks in Process Fault Diagnosis. IEEE Transactions on Systems, Man, and Cybernetics. 21: 815-825.
R. M. Behbahani, H. Jazayeriâ€Rad, and S. Hajmirzaee. 2009. Fault Detection and Diagnosis in a Sour Gas Absorption Column Using Neural Networks. Chemical Engineering & Technology. 32: 840-845.
H. A. Nozari, M. A. Shoorehdeli, S. Simani, and H. D. Banadaki. 2012. Model-based robust Fault Detection and Isolation of an Industrial Gas Turbine Prototype Using Soft Computing Techniques. Neurocomputing. 91: 29-47.
S. Chen, S. Billings, and P. Grant. 1990. Non-linear System Identification Using Neural Networks. International Journal of Control. 51: 1191-1214.
K. S. Narendra and K. Parthasarathy. 1990. Identification and Control of Dynamical Systems Using Neural Networks. IEEE Transactions on Neural Networks. 1: 4-27.
S. A. Taqvi, L. D. Tufa, H. Zabiri, S. Mahadzir, A. S. Maulud, and F. Uddin. 2017. Rigorous Dynamic Modelling and Identification of Distillation Column using Aspen Plus. 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC). 262-267.
W. A. Shewhart. 1926. Quality Control Charts 1. Bell System Technical Journal. 5: 593-603.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.