METHYLENE BLUE REMOVAL USING COCONUT SHELL BIOCHAR SYNTHESIZED THROUGH MICROWAVE-ASSISTED PYROLYSIS

Authors

  • Dwi Nuryana Chemical Engineering Department, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229 Indonesia
  • Muhammad Fahrul Rahman Alim Chemical Engineering Department, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229 Indonesia
  • Maizatulakmal Yahayu School of Chemical and Energy Engineering (FCEE), Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Muhammad Abbas Ahmad School of Chemical and Energy Engineering (FCEE), Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Raja Safazliana Raja Sulong bSchool of Chemical and Energy Engineering (FCEE), Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Muhammad Fakhrul Syukri Abd Aziz bSchool of Chemical and Energy Engineering (FCEE), Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Haniif Prasetiawan Chemical Engineering Department, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229 Indonesia
  • Zainul Akmar Zakaria School of Chemical and Energy Engineering (FCEE), Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ratna Dewi Kusumaningtyas Chemical Engineering Department, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229 Indonesia

DOI:

https://doi.org/10.11113/jt.v82.14359

Keywords:

Coconut, Biochar, Microwave, Pyrolysis, Methylene blue

Abstract

Indonesia is the world’s second largest producer of coconut. This at the same time resulted in huge generation of coconut shell waste that need to be properly managed to prevent environmental contamination such as water, air and soil pollution. Current techniques of physical and thermal processing are time and energy consuming. This study reports on the conversion of coconut shell biomass into biochar using microwave-assisted pyrolysis (MAP). The MAP processes were carried out at different microwave power (550-650W) and   residence time (15-25 minutes). Two of the highest biochar yields were obtained at 550W with the residence times of 15 minutes (91.31 wt%, termed as S1) and 20 minutes (83.88 wt%, termed as S2), respectively. Both values were higher than biochar yield obtained using conventional pyrolysis process i.e. 30.10 wt%. Both S1 and S2 showed considerable capacity to remove 0.6875 mg.g-1 and 0.5165 mg.g-1 methylene blue which had the initial concentration of 25 mg.L-1. The adsorption efficiencies of S1 and S2 biochars were 55.00% and 41.32%, respectively. Results obtained from the FTIR, FESEM and BET analysis also supported the methylene blue removal properties of both S1 and S2, respectively. As a conclusion, coconut shell showed potential as a useful raw material to produce biochar that can be used for methylene blue removal from solution. Nevertheless, more investigation need to be carried out prior to commercialization venture of the coconut-shell based biochar.

References

Statistik, B. P. 2016. Statistical Yearbook of Indonesia 2016. (S. of S. C. and Publication, Ed.). Jakarta: BPS-Statistics Indonesia.

Mulyawan, M., Setyowati, E., & Wijaya, A. 2015. Surfaktan Sodium Ligno Sulfonat (SLS) dari Debu Sabut Kelapa. Jurnal Teknik ITS. 4(1): 1-3.

Gao, Y., Yang, Y., Qin, Z., & Sun, Y. 2016. Factors Affecting the Yield of Bio-oil from the Pyrolysis of Coconut Shell. SpringerPlus. 5(1). https://doi.org/10.1186/s40064-016-1974-2.

Fardhyanti, D. S., Megawati, Kurniawan, C., Sigit Lestari, R. A., & Triwibowo, B. 2018. Producing Bio-oil from Coconut Shell by Fast Pyrolysis Processing. MATEC Web of Conferences. 237: 0-4. https://doi.org/10.1051/matecconf/201823702001.

Kumar, V. R. P., Gunasekaran, K., & Shyamala, T. 2019. Characterization Study on Coconut Shell Concrete with Partial Replacement of Cement by GGBS. Journal of Building Engineering. 26(March): 100830. https://doi.org/10.1016/j.jobe.2019.100830.

Sinsinwar, S., Sarkar, M. K., Suriya, K. R., Nithyanand, P., & Vadivel, V. 2018. Use of Agricultural Waste (Coconut Shell) for the Synthesis of Silver Nanoparticles and Evaluation of Their Antibacterial Activity Against Selected Human Pathogens. Microbial Pathogenesis. 124(July): 30-37. https://doi.org/10.1016/j.micpath.2018.08.025.

Granados-Fitch, M. G., Quintana-Melgoza, J. M., Juarez-Arellano, E. A., & Avalos-Borja, M. 2019. Mechanism to H 2 Production on Rhenium Carbide from Pyrolysis of Coconut Shell. International Journal of Hydrogen Energy. 44(5): 2784-2796. https://doi.org/10.1016/j.ijhydene.2018.12.042.

Yahaya, A. Z., Somalu, M. R., Muchtar, A., Sulaiman, S. A., & Wan Daud, W. R. 2019. Effect of Particle Size and Temperature on Gasification Performance of Coconut and Palm Kernel Shells in Downdraft Fixed-bed Reactor. Energy. 175: 931-940. https://doi.org/10.1016/j.energy.2019.03.138.

Sanni, E. S., Emetere, M. E., Odigure, J. O., Efeovbokhan, V. E., Agboola, O., & Sadiku, E. R. 2017. Determination of Optimum Conditions for the Production of Activated Carbon Derived from Separate Varieties of Coconut Shells. International Journal of Chemical Engineering. 2017. https://doi.org/10.1155/2017/2801359.

Muvhiiwa, R., Kuvarega, A., Llana, E. M., & Muleja, A. (2019). Study of Biochar from Pyrolysis and Gasification of Wood Pellets in a Nitrogen Plasma Reactor for Design of Biomass Processes. Journal of Environmental Chemical Engineering. 7(5): 103391. https://doi.org/10.1016/j.jece.2019.103391.

Abas, F. Z., & Ani, F. N. 2014. Comparing Characteristics of Oil Palm Biochar Using Conventional and Microwave Heating. Jurnal Teknologi (Sciences and Engineering). 68(3): 33-37. https://doi.org/10.11113/jt.v68.2926.

Shukla, N., Sahoo, D., & Remya, N. 2019. Biochar from Microwave Pyrolysis of Rice Husk for Tertiary Wastewater Treatment and Soil Nourishment. Journal of Cleaner Production. 235: 1073-1079. https://doi.org/10.1016/j.jclepro.2019.07.042.

Reddy, B. R., Shravani, B., Das, B., Dash, P. S., & Vinu, R. 2019. Microwave-assisted and Analytical Pyrolysis of Coking and Non-coking Coals: Comparison of Tar and Char Compositions. Journal of Analytical and Applied Pyrolysis. 142(September 2018): 104614. https://doi.org/10.1016/j.jaap.2019.05.003.

Haeldermans, T., Claesen, J., Maggen, J., Carleer, R., Yperman, J., Adriaensens, P., … Schreurs, S. 2019. Microwave Assisted and Conventional Pyrolysis of MDF – Characterization of the Produced Biochars. Journal of Analytical and Applied Pyrolysis. 138(October 2018): 218-230. https://doi.org/10.1016/j.jaap.2018.12.027.

Wu, L., Zhou, J., Zhou, J., Liang, K., Song, Y., Zhang, Q., & Tian, Y. 2019. Temperature-rising Characteristics and Product Analysis of Low-rank Coal Microwave Pyrolysis under CH4 Atmosphere. Journal of Analytical and Applied Pyrolysis. 141(March): 104632. https://doi.org/10.1016/j.jaap.2019.104632.

Lam, S. S., Azwar, E., Peng, W., Tsang, Y. F., Ma, N. L., Liu, Z., … Kwon, E. E. 2019. Cleaner Conversion of Bamboo Into Carbon Fibre with Favourable Physicochemical and Capacitive Properties Via Microwave Pyrolysis Combining with Solvent Extraction and Chemical Impregnation. Journal of Cleaner Production. 236: 117692. https://doi.org/10.1016/j.jclepro.2019.117692.

Lam, S. S., Wan Mahari, W. A., Ma, N. L., Azwar, E., Kwon, E. E., Peng, W., … Park, Y. K. 2019. Microwave Pyrolysis Valorization of Used Baby Diaper. Chemosphere. 230: 294-302. https://doi.org/10.1016/j.chemosphere.2019.05.054.

Bu, Q., Chen, K., Xie, W., Liu, Y., Cao, M., Kong, X., … Mao, H. 2019. Hydrocarbon Rich Bio-oil Production, Thermal Behavior Analysis and Kinetic Study of Microwave-assisted Co-pyrolysis of Microwave-torrefied Lignin with Low Density Polyethylene. Bioresource Technology. 291(July): 121860. https://doi.org/10.1016/j.biortech.2019.121860.

Abas, F. Z., Ani, F. N., & Zakaria, Z. A. 2018. Microwave-assisted Production of Optimized Pyrolysis Liquid Oil from Oil Palm Fiber. Journal of Cleaner Production. 182: 404-413. https://doi.org/10.1016/j.jclepro.2018.02.052.

Kostas, E. T., Williams, O. S. A., Duran-Jimenez, G., Tapper, A. J., Cooper, M., Meehan, R., & Robinson, J. P. 2019. Microwave Pyrolysis of Laminaria Digitata to Produce Unique Seaweed-derived Bio-oils. Biomass and Bioenergy. 125(October 2018): 41-49. https://doi.org/10.1016/j.biombioe.2019.04.006.

Windeatt, J. H., Ross, A. B., Williams, P. T., Forster, P. M., Nahil, M. A., & Singh, S. 2014. Characteristics of Biochars from Crop Residues: Potential for Carbon Sequestration and Soil Amendment. Journal of Environmental Management. 146: 189-197. https://doi.org/10.1016/j.jenvman.2014.08.003.

Islam, M. A., Ahmed, M. J., Khanday, W. A., Asif, M., & Hameed, B. H. 2017. Mesoporous Activated Coconut Shell-derived Hydrochar Prepared via Hydrothermal Carbonization-NaOH Activation for Methylene Blue Adsorption. Journal of Environmental Management. 203: 237-244. https://doi.org/10.1016/j.jenvman.2017.07.029.

Yang, K., Peng, J., Srinivasakannan, C., Zhang, L., Xia, H., & Duan, X. 2010. Preparation of High Surface Area Activated Carbon from Coconut Shells Using Microwave Heating. Bioresource Technology. 101(15): 6163-6169. https://doi.org/10.1016/j.biortech.2010.03.001.

Xin, Y., Wang, D., Li, X. Q., Yuan, Q., & Cao, H. 2018. Influence of Moisture Content on Cattle Manure Char Properties and Its Potential for Hydrogen Rich Gas Production. Journal of Analytical and Applied Pyrolysis. 130: 249-255. https://doi.org/10.1016/j.jaap.2018.01.005.

Enders, A., Hanley, K., Whitman, T., Joseph, S., & Lehmann, J. 2012. Characterization of Biochars to Evaluate Recalcitrance and Agronomic Performance. Bioresource Technology. 114: 644-653. https://doi.org/10.1016/j.biortech.2012.03.022.

Huang, Y. F., Chiueh, P. Te, Kuan, W. H., & Lo, S. L. 2015. Effects of Lignocellulosic Composition and Microwave Power Level on the Gaseous Product of Microwave Pyrolysis. Energy. 89: 974-981. https://doi.org/10.1016/j.energy.2015.06.035.

Rout, T., Pradhan, D., Singh, R. K., & Kumari, N. 2016. Exhaustive Study of Products Obtained from Coconut Shell Pyrolysis. Journal of Environmental Chemical Engineering. 4(3). https://doi.org/10.1016/j.jece.2016.02.024.

Hariz, A. R. M., Azlina, W. A. K. G. W., Fazly, M. M., & Norziana, Z. Z. 2015. Local Practices for Production of Rice Husk Biochar and Coconut Shell Biochar : Production Methods, Product Characteristics, Nutrient and Field Water Holding Capacity. Journal of Tropical Agriculture and Food Science. 43(1): 91-101.

Lima, I. M., Boateng, A. A., & Klasson, K. T. 2009. Pyrolysis of Broiler Manure: Char and Product Gas Characterization. Industrial and Engineering Chemistry Research. 48(3): 1292-1297. https://doi.org/10.1021/ie800989s.

Sukiran, M. A., Kheang, L. S., Bakar, N. A., & May, C. Y. 2011. Production and Characterization of Bio-char from the Pyrolysis of Empty Fruit Bunches. American Journal of Applied Sciences. 8(10): 984-988. https://doi.org/10.3844/ajassp.2011.984.988.

Liu, Y., Zhao, X., Li, J., Ma, D., & Han, R. 2012. Characterization of Bio-char from Pyrolysis of Wheat Straw and Its Evaluation on Methylene Blue Adsorption. Desalination and Water Treatment. 46(1-3): 115-123. https://doi.org/10.1080/19443994.2012.677408.

Dinh, V. P., Huynh, T. D. T., Le, H. M., Nguyen, V. D., Dao, V. A., Hung, N. Q., … Tan, L. V. 2019. Insight into the Adsorption Mechanisms of Methylene Blue and Chromium(III) from Aqueous Solution onto Pomelo Fruit Peel. RSC Advances. 9(44): 25847-25860. https://doi.org/10.1039/c9ra04296b.

Ait Ahsaine, H., Anfar, Z., Zbair, M., Ezahri, M., & El Alem, N. 2018. Adsorptive Removal of Methylene Blue and Crystal Violet onto Micro-mesoporous Zr 3 O/activated Carbon Composite: A Joint Experimental and Statistical Modeling Considerations. Journal of Chemistry. 2018. https://doi.org/10.1155/2018/6982014.

Jawad, A. H., Abdulhameed, A. S., & Mastuli, M. S. 2020. Acid-factionalized Biomass Material for Methylene Blue Dye Removal: A Comprehensive Adsorption and Mechanism Study. Journal of Taibah University for Science. 14(1): 305-313. https://doi.org/10.1080/16583655.2020.1736767.

Zubair, M., Mu’azu, N. D., Jarrah, N., Blaisi, N. I., Aziz, H. A., & A. Al-Harthi, M. 2020. Adsorption Behavior and Mechanism of Methylene Blue, Crystal Violet, Eriochrome Black T, and Methyl Orange Dyes onto Biochar-derived Date Palm Fronds Waste Produced at Different Pyrolysis Conditions. Water, Air, and Soil Pollution. 231(5). https://doi.org/10.1007/s11270-020-04595-x.

Jouiad, M., Al-Nofeli, N., Khalifa, N., Benyettou, F., & Yousef, L. F. 2015. Characteristics of Slow Pyrolysis Biochars Produced from Rhodes Grass and Fronds of Edible Date Palm. Journal of Analytical and Applied Pyrolysis. 111: 183-190. https://doi.org/10.1016/j.jaap.2014.10.024.

Wang, Y., Hu, Y., Zhao, X., Wang, S., & Xing, G. 2013. Comparisons of Biochar Properties from Wood Material and Crop Residues at Different Temperatures and Residence Times. Energy and Fuels. 27(10): 5890-5899. https://doi.org/10.1021/ef400972z.

Antunes, A. E., Jacob, M. V, Brodie, G., & Schneider, P. A. 2017. Microwave Pyrolysis of Sewage Biosolids: Dielectric Properties, Microwave Susceptor Role and Its Impact on Biochar Properties. Journal of Analytical and Applied Pyrolysis. https://doi.org/10.1016/j.jaap.2017.11.023.

Li, Y., Du, Q., Liu, T., Peng, X., Wang, J., Sun, J., … Xia, L. 2013. Comparative Study of Methylene Blue Dye Adsorption onto Activated Carbon, Graphene Oxide, and Carbon Nanotubes. Chemical Engineering Research and Design. 91(2): 361-368. https://doi.org/10.1016/j.cherd.2012.07.007.

Jia, P., Tan, H., Liu, K., & Gao, W. 2018. Removal of Methylene Blue from Aqueous Solution by Bone Char. Applied Sciences (Switzerland). 8(10). https://doi.org/10.3390/app8101903.

Chahinez, H.-O., Abdelkader, O., Leila, Y., & Tran, H. N. (2020). One-stage Preparation of Palm Petiole-derived Biochar: Characterization and Application for Adsorption of Crystal Violet Dye in Water. Environmental Technology & Innovation. 19: 100872. https://doi.org/10.1016/j.eti.2020.100872.

Lawal, A. A., Hassan, M. A., Farid, M. A. A., Yasim-Anuar, T. A. T., Yusoff, M. Z. M., Zakaria, M. R., … Shirai, Y. 2020. Production of Biochar from Oil Palm Frond by Steam Pyrolysis for Removal of Residual Contaminants in Palm Oil Mill Effluent Final Discharge. Journal of Cleaner Production. 265: 121643. https://doi.org/10.1016/j.jclepro.2020.121643.

Razali, N., & Kamarulzaman, N. Z. 2020. Chemical Characterizations of Biochar from Palm Oil Trunk for Palm Oil Mill Effluent (POME) Treatment. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.02.219.

Castilla-Caballero, D., Barraza-Burgos, J., Gunasekaran, S., Roa-Espinosa, A., Colina-Márquez, J., Machuca-Martínez, F., … Vázquez-Rodríguez, S. 2020. Experimental Data on the Production and Characterization of Biochars Derived from Coconut-shell Wastes Obtained from the Colombian Pacific Coast at Low Temperature Pyrolysis. Data in Brief. 28: 1-11. https://doi.org/10.1016/j.dib.2019.104855.

Bispo, M. D., Schneider, J. K., Da Silva Oliveira, D., Tomasini, D., Da Silva MacIel, G. P., Schena, T., … Caramão, E. B. 2018. Production of activated biochar from coconut fiber for the Removal of Organic Compounds from Phenolic. Journal of Environmental Chemical Engineering. 6(2): 2743-2750. https://doi.org/10.1016/j.jece.2018.04.029.

Şencan, A., & Kiliç, M. 2015. Investigation of the Changes in Surface Area and FT-IR Spectra of Activated Carbons Obtained from Hazelnut Shells by Physicochemical Treatment Methods. Journal of Chemistry. 2015. https://doi.org/10.1155/2015/651651.

Downloads

Published

2020-07-20

Issue

Section

Science and Engineering

How to Cite

METHYLENE BLUE REMOVAL USING COCONUT SHELL BIOCHAR SYNTHESIZED THROUGH MICROWAVE-ASSISTED PYROLYSIS. (2020). Jurnal Teknologi, 82(5). https://doi.org/10.11113/jt.v82.14359