DETERMINATION OF DEFLECTION BASIN USING PAVEMENT MODELLING COMPUTER PROGRAMS AND FINITE ELEMENT METHOD

Authors

  • Sri Atmaja P. Rosyidi Dept. of Civil Engineering, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia
  • Asmah Hamim Dept. of Civil Engineering, Universiti Kebangsaan Malaysia, Selangor, Malaysia
  • Aizat Mohd Taib Dept. of Civil Engineering, Universiti Kebangsaan Malaysia, Selangor, Malaysia
  • Nor Azliana Akmal Jamaludin Dept. of Computer Science, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia
  • Zubair Ahmed Memon Dept. of Engineering Management, Prince Sultan University, Saudi Arabia
  • Nur Izzi Md. Yusoff Dept. of Civil Engineering, Universiti Kebangsaan Malaysia, Selangor, Malaysia
  • Mohd Rosli Hainin Dept. of Civil Engineering, College of Engineering, Universiti Malaysia Pahang, Pahang, Malaysia

DOI:

https://doi.org/10.11113/jt.v82.14376

Keywords:

Finite element method, KENLAYER, EVERSTRESS 5.0, Falling Weight Deflectometer, flexible pavement

Abstract

Several methods can be used to model pavement structures, namely multi-layered elastic theory (MET), finite element method (FEM), or finite difference method (FDM). In this study, three computer programs, KENLAYER and EVERSTRESS 5.0 which are based on MET, and ANSYS, representing the FEM, are used in Falling Weight Deflectometer (FWD) test on a pavement structure to determine deflection basin. The deflection basin was developed by using the results of vertical deflection from each sensor of an FWD test. In this study, a pavement structure was modelled for three locations of FWD tests, namely CH 200, CH 1450, and CH 2300. Based on the comparative study, all computer programs show good potential in determining deflection basin, with small percentage of Root Mean Square Error (RMSE) of between 1.00% to 4.31% for all models developed by the computer programs and field measurement. In order to obtain a higher accuracy of the FEM, the models considered the dynamic loading, increasing size of model geometry, as well as the reduction of the mesh element sizes. Moreover, changing from static to dynamic loading led to the reduction of percentage in RMSE for CH 200 from 2.41% to 0.94%.  Decreasing size of closer elements of loading region also results in lower percentages of RMSE, calculated at 4.21% to 3.63% and 1.20% to 1.18% for CH 1450 and CH 2300, respectively. FEM, therefore, is found to be the best method for determining deflection basin of FWD in comparison to other MET computer programs.

References

E. Pan, E. Chen, W. Alkasawneh. 2008. Layered Flexible Pavement Studies: Challenges in Forward and Inverse Problems. Int. J. Pavement Res. Technol. 1: 12-16.

A. B. Goktepe, E. Agar, a. Hilmi Lav. 2006. Advances in Backcalculating the Mechanical Properties of Flexible Pavements. Adv. Eng. Softw. 37: 421-431. Doi:10.1016/j.advengsoft.2005.10.001.

A. H. Lav, A. B. Goktepe, M. A. Lav. 2009. Backcalculation of Flexible Pavements using Soft Computing. Intell. Soft Comput. Infrastruct. Syst. Eng. Springer. 67-106.

K. Tawfiq, J. Armaghani, J. Sobanjo. 2000. Seismic Pavement Analyzer vs. Falling Weight Deflectometer for Pavement Evaluation: Comparative Study. Nondestruct. Test. Pavements Backcalc. Modul. Third Vol. ASTM International,

R. Hadidi, N. Gucunski. 2010. Comparative Study of Static and Dynamic Falling Weight Deflectometer Back-calculations Using Probabilistic Approach. J. Transp. Eng. 136: 196-204.

P. E. Sebaaly, S. Bemanian, S. Lani. 2000. Nevada’s Approach to the Backcalculation Process. Nondestruct. Test. Pavements Backcalc. Modul. Third Vol. ASTM International,

S. N. Shoukry, D. R. Martinelli, O. I. Selezneva. 1996. Dynamic Considerations in Pavement Layers Moduli Evaluation Using Falling Weight Deflectometer. Nondestruct. Eval. Bridg. Highw., International Society for Optics and Photonics. 109-121.

I. N. Abdallah, S. Nazarian. 2009. Rapid Interpretation of Nondestructive Testing Results Using Neural Networks. Intell. Soft Comput. Infrastruct. Syst. Eng., Springer. 1-19.

R. A. Tarefder, M. U. Ahmed. 2014. Modeling of the FWD Deflection Basin to Evaluate Airport Pavements. Int. J. Geomech. 14: 205-213. Doi:10.1061/(ASCE)GM.1943-5622.0000305.

L. H. Irwin. 2002. Backcalculation: An Overview and Perspective. Pavement Eval. Conf. 2002, Roanoke, Virginia, USA.

K. Gopalakrishnan, M. R. Thompson, A. Manik. Rapid Finite-element Based Airport Pavement Moduli Solutions using Neural Networks. 3 (n.d.): 63-71.

Y. H. Huang. 2004. Pavement Analysis and Design. Second ed. Prentice-Hall, Upper Saddle River, N. J.

E. J. Yoder, M. W. Witczak. 1975. Principles of Pavement Design. John Wiley & Sons.

M. K. Charyulu, J. B. Sheeler. 1968. Theoretical Stress Distribution in an Elastic Multi-Layered System. Highw. Res. Rec. 11-17.

S. Mahasantipiya. 2000. Performance Analysis of bases for Flexible Pavement. Ohio University.

H. Ziari, M. M. Khabiri. 2007. Interface Condition Influence on Prediction of Flexible Pavement Life. J. Civ. Eng. Manag. 13: 71-76.

D.-H. Chen, M. Zaman, J. Laguros, A. Soltani. 1995. Assessment of Computer Programs For Analysis Of Flexible Pavement Structure. Transp. Res. Rec. 1482: 123-133.

D. S. Gedafa. 2006. Comparison of Flexible Pavement Performance using KENLAYER and HDM-4. Midwest Transp. Consortium, Ames, Iowa.

O. S. Aderinola. (n.d.). Development of Mechanistic-Empirical Pavement Design for Tropical Climate Using Cement-treated Base Layer.

A. Loulizi, I. L. Al-Qadi, M. Elseifi. 2006. Difference between In Situ Flexible Pavement Measured and Calculated Stresses and Strains. J. Transp. Eng. 132: 574-579.

E. O. Ekwulo, D. B. Eme. 2009. Fatigue and Rutting Strain Analysis of Flexible Pavements Designed using CBR Methods. African J. Environ. Sci. Technol. 3.

E. O. Ekwulo, J. C. Agunwamba. 2013. Layered Elastic Analysis and Design Tool for Predicting Fatigue and Rutting Strains in Low Volume Asphalt Pavement in Nigeria. Eur. J. Appl. Engrg Sc. Res. 22: 8-22.

Y. M. Desai. 2011. Finite Element Method with Applications in Engineering. Pearson Education India,

M. N. S. Hadi, B. C. Bodhinayake. 2003. Non-linear Finite Element Analysis of Flexible Pavements. Adv. Eng. Softw. 34: 657-662. Doi:10.1016/S0965-9978(03)00109-1.

M. Kim, E. Tutumluer, J. Kwon. 2009. Nonlinear Pavement Foundation Modeling for Three-dimensional Finite-Element Analysis of Flexible Pavements. 195-208.

B. Saad, H. Mitri, H. Poorooshasb. 2005. Three-dimensional Dynamic Analysis of Flexible Conventional Pavement Foundation. J. Transp. Eng. 131: 460-469.

Y.-H. Cho, B. McCullough, J. Weissmann. 1996. Considerations on Finite-element Method Application in Pavement Structural Analysis. Transp. Res. Rec. J. Transp. Res. Board. 1539: 96-101. Doi:10.3141/1539-13.

B. Sukumaran, M. Willis, N. Chamala. 2005. Three Dimensional Finite Element Modeling of Flexible Pavements. Adv. Pavement Eng. 1-12.

D. L. Logan. 2011. A First Course in the Finite Element Method.Cengage Learning.

ANSYS Workbench Help. 2017. ANSYS Release 18.0, ANSYS, Inc.

C. Kuo, F. Chou. 2004. Development of 3â€D Finite Element Model for Flexible Pavements. J. Chinese Inst. Eng. 27: 707-717. Doi:10.1080/02533839.2004.9670918.

B. Ghadimi, H. Asadi, H. Nikraz, C. Leek. 2013. Effects of Geometrical Parameters on Numerical Modeling of Pavement Granular Material. Airf. Highw. Pavement 2013 Sustain. Effic. Pavements. 1291-1303.

Downloads

Published

2020-05-22

Issue

Section

Science and Engineering

How to Cite

DETERMINATION OF DEFLECTION BASIN USING PAVEMENT MODELLING COMPUTER PROGRAMS AND FINITE ELEMENT METHOD. (2020). Jurnal Teknologi (Sciences & Engineering), 82(4). https://doi.org/10.11113/jt.v82.14376