STATISTICAL OPTIMIZATION AND CHARACTERIZATION OF ACOUSTICALLY EXTRACTED ANANAS COMOSUS PEEL POWDER WITH ENHANCED ANTIOXIDANT CAPACITY

Authors

  • Nur Azzanizawaty Yahya Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Roswanira Abdul Wahab Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia http://orcid.org/0000-0002-9982-6587
  • Mariani Abdul Hamid School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
  • Naji Arafat Mahat Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia Centre of Research for Fiqh Forensics and Judiciary, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
  • Mohamad Afiq Mohamed Huri Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nursyafreena Attan Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Siti Ernieyanti Hashim Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v82.14486

Keywords:

Ananas comosus peels, ultrasound−assisted extraction, response surface methodology, Box−Behnken design, antioxidant capacities

Abstract

Ananas comosus (L.) Merr is one of many commercially popular fruits in the cannery food industry that contributes to the increasingly mounting agro-industrial waste. In this study, a four−factor−three−level Box−Behnken design (BBD) that comprised of sonication time (A), solvent ratio (B), amplitude (C) and liquid−solid ratio (D) for the ultrasound−assisted extraction (UAE) of pineapple peels (PP) was utilized to optimize the yield of total phenolic content (TPC). Under an optimized UAE condition [5 min; 50 % of ethanol: water; 65 % of amplitude; 35:1 mL/g of liquid−solid ratio], the highest TPC from PP of 708.10 mg gallic acid equivalent (GAE)/g DW was achieved. Antioxidant capacity analysis of PP revealed a high total flavonoid content (TFC) with the IC50 for 2,2−diphenyl−1−picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) of 1146.86 ± 11.83 mg QE/g, 11.83 mg/mL and 1578.07 ± 25.96 µM Fe (II)/100g, respectively. High-performance liquid chromatography (HPLC) analysis revealed that the major flavonoid in the phenolic profile of PP extracts being catechin followed by quercetin and gallic acid. The UAE of PP extracts exhibited higher TPC than known conventional extraction techniques, thus indicating its efficacy to recover satisfactory quantities of phenolics in PP under optimized conditions.

Author Biographies

  • Roswanira Abdul Wahab, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

    Dept. of Chemistry

    Senior Lecturer

  • Mariani Abdul Hamid, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia

    School of Chemical and Energy Engineering

    Senior Lecturer

  • Naji Arafat Mahat, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia Centre of Research for Fiqh Forensics and Judiciary, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800, Nilai, Negeri Sembilan, Malaysia

    Dept. of Chemistry

    Senior Lecturer

  • Mohamad Afiq Mohamed Huri, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

    Dept. of Chemistry

    Lecturer

  • Nursyafreena Attan, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

    Dept. of Chemistry

    Lecturer

  • Siti Ernieyanti Hashim, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

    Dept. of Chemistry

    Lecturer

References

Kargutkar, S. and S. Brijesh. 2016. Anti-rheumatic Activity of Ananas Comosus Fruit Peel Extract in a Complete Freund's Adjuvant Rat Model. Pharmaceutical Biology. 54(11): 2616-2622. DOI: 10.3109/13880209.2016.1173066.

Dhukani, A. 2013. Ananas Comosus (L.) Merr., Bromeliaceae. Medicinal Plant Monograph, C.L. Quave, Editor.

Hossain, M. A. and S. M. M. Rahman. 2011. Total Phenolics, Flavonoids and Antioxidant Activity of Tropical Fruit Pineapple. Food Research International. 44(3): 672-676. DOI: 10.1016/j.foodres.2010.11.036.

Aditiya, H. B., W. T. Chong, T. M. I. Mahlia, A. H. Sebayang, M. A. Berawi, and H. Nur. 2016. Second Generation Bioethanol Potential from Selected Malaysia’s Biodiversity Biomasses: A Review. Waste Management. 47: 46-61. DOI: https://doi.org/10.1016/j.wasman.2015.07.031.

Khalid, N., H. Suleria, and I. Ahmed. 2016. Pineapple Juice. Handbook of Functional Beverages and Human Health, S. Fereidoon and A. Cesarettin, Editors. CRC Press: New York. 489-500.

Barbulova, A., G. Colucci, and F. Apone. 2015. New Trends in Cosmetics: By-products of Plant Origin and Their Potential Use as Cosmetic Active Ingredients. Cosmetics. 2(2): 82-92. DOI: 10.3390/cosmetics2020082.

Ameer, K., S. W. Bae, Y. Jo, H. G. Lee, A. Ameer, and J. H. Kwon. 2017. Optimization of Microwave-assisted Extraction of Total Extract, Stevioside and Rebaudioside-A from Stevia Rebaudiana (Bertoni) Leaves, using Response Surface Methodology (RSM) and Artificial Neural Network (ANN) Modelling. Food Chemistry. 229: 198-207. DOI: 10.1016/j.foodchem.2017.01.121.

Pilkington, J. L., C. Preston, and R. L. Gomes. 2014. Comparison of Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) Towards Efficient Extraction of Artemisinin from Artemisia Annua. Industrial Crops and Products. 58: 15-24. DOI: 10.1016/j.indcrop.2014.03.016.

Yahya, N. A., N. Attan, and R. A. Wahab. 2018. An Overview of Cosmeceutically Relevant Plant Extracts and Strategies for Extraction of Plant-based Bioactive Compounds. Food and Bioproducts Processing. 112: 69-85. DOI: https://doi.org/10.1016/j.fbp.2018.09.002.

Chan, C. H., T. Y. See, R. Yusoff, G. C. Ngoh, and K. W. Kow. 2017. Extraction of Bioactives from Orthosiphon Stamineus Using Microwave and Ultrasound-assisted Techniques: Process Optimization and Scale Up. Food Chemistry. 221: 1382-1387. DOI: 10.1016/j.foodchem.2016.11.016.

Chen, S., Z. Zeng, N. Hu, B. Bai, H. Wang, and Y. Suo. 2018. Simultaneous Optimization of the Ultrasound-assisted Extraction for Phenolic Compounds Content and Antioxidant Activity of Lycium Ruthenicum Murr. Fruit Using Response Surface Methodology. Food Chemistry. 242: 1-8.

Marzuki, N. H. C., M. A. Hamid, and R. A. Wahab. 2018. Assessment of Fatty Acid Composition and Response Surface Optimization of Ultrasonic-assisted Extraction of Phenolic Compounds from Pouteria Campechiana Pulp. Malaysian Journal of Fundamental and Applied Sciences. 14(2): 269-277.

Hatambeygi, N., G. Abedi, and M. Talebi. 2011. Method Development and Validation for Optimised Separation of Salicylic, Acetyl Salicylic and Ascorbic Acid in Pharmaceutical Formulations by Hydrophilic Interaction Chromatography and Response Surface Methodology. Journal of Chromatography A. 1218(35): 5995-6003.

Manan, F. M. A., N. Attan, Z. Zakaria, A. S. A. Keyon, and R. A. Wahab. 2018. Enzymatic Esterification of Eugenol and Benzoic Acid by a Novel Chitosan-chitin Nanowhiskers Supported Rhizomucor Miehei Lipase: Process Optimization and Kinetic Assessments. Enzyme and Microbial Technology. 108: 42-52. DOI: https://doi.org/10.1016/j.enzmictec.2017.09.004.

Emeka, E. E., O. C. Ojiefoh, C. Aleruchi, L. A. Hassan, O. M. Christiana, M. Rebecca, E. O. Dare, and A. E. Temitope. 2014. Evaluation of Antibacterial Activities of Silver Nanoparticles Green-synthesized Using Pineapple Leaf (Ananas Comosus). Micron. 57: 1-5. DOI: 10.1016/j.micron.2013.09.003.

Difonzo, G., K. Vollmer, F. Caponio, A. Pasqualone, R. Carle, and C. B. Steingass. 2019. Characterisation and Classification of Pineapple (Ananas comosus [L.] Merr.) Juice from Pulp and Peel. Food Control. 96: 260-270. DOI: 10.1016/j.foodcont.2018.09.015.

Drozdz, P., V. Seziene, and K. Pyrzynska. 2017. Phytochemical Properties and Antioxidant Activities of Extracts from Wild Blueberries and Lingonberries. Plant Foods for Human Nutrition. 72(4): 360-364. DOI: 10.1007/s11130-017-0640-3.

Song, J., Q. Yang, W. Huang, Y. Xiao, D. Li, and C. Liu. 2018. Optimization of Trans Lutein from Pumpkin (Cucurbita moschata) Peel by Ultrasound-assisted Extraction. Food and Bioproducts Processing. 107: 104-112. DOI: 10.1016/j.fbp.2017.10.008.

Li, T., P. Shen, W. Liu, C. Liu, R. Liang, N. Yan, and J. Chen. 2014. Major Polyphenolics in Pineapple Peels and Their Antioxidant Interactions. International Journal of Food Properties. 17(8): 1805-1817. DOI: 10.1080/10942912.2012.732168.

da Silva, D. I., G. D. Nogueira, A. G. Duzzioni, and M. A. Barrozo. 2013. Changes of Antioxidant Constituents in Pineapple (Ananas comosus) Residue during Drying Process. Industrial Crops and Products. 50: 557-562.

Živković, J., K. Šavikin, T. Janković, N. Ćujić, and N. Menković. 2018. Optimization of Ultrasound-assisted Extraction of Polyphenolic Compounds from Pomegranate Peel Using Response Surface Methodology. Separation and Purification Technology. 194: 40-47. DOI: 10.1016/j.seppur.2017.11.032.

Xu, D. P., J. Zheng, Y. Zhou, Y. Li, S. Li, and H. B. Li. 2017. Ultrasound-assisted Extraction of Natural Antioxidants from the Flower of Limonium Sinuatum: Optimization and Comparison with Conventional Methods. Food Chemistry. 217: 552-559. DOI: 10.1016/j.foodchem.2016.09.013.

Sang, J., J. Sang, Q. Ma, X.-f. Hou, and C.-q. Li. 2017. Extraction Optimization and Identification of Anthocyanins from Nitraria Tangutorun Bobr. Seed Meal and Establishment of a Green Analytical Method of Anthocyanins. Food Chemistry. 218: 386-395. DOI: https://doi.org/10.1016/j.foodchem.2016.09.093.

Wang, W., J. Jung, E. Tomasino, and Y. Zhao. 2016. Optimization of Solvent and Ultrasound-assisted Extraction for Different Anthocyanin Rich Fruit and Their Effects on Anthocyanin Compositions. LWT - Food Science and Technology. 72: 229-238. DOI: https://doi.org/10.1016/j.lwt.2016.04.041.

Pyrzynska, K. and A. Pękal. 2013. Application of Free Radical Diphenylpicrylhydrazyl (DPPH) to Estimate the Antioxidant Capacity of Food Samples. Analytical Methods. 5(17): 4288-4295. DOI: 10.1039/C3AY40367J.

Pękal, A. and K. Pyrzynska. 2014. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Analytical Methods. 7(9): 1776-1782. DOI: 10.1007/s12161-014-9814-x.

Morais, D. R., E.M. Rotta, S. C. Sargi, E. M. Schmidt, E. G. Bonafe, M. N. Eberlin, A. C. H. F. Sawaya, and J. V. Visentainer. 2015. Antioxidant Activity, Phenolics and UPLC–ESI(–)–MS of Extracts from Different Tropical Fruits Parts and Processed Peels. Food Research International. 77: 392-399. DOI: 10.1016/j.foodres.2015.08.036.

da Silva, D. I. S., G. D. R. Nogueira, A. G. Duzzioni, and M. A. S. Barrozo. 2013. Changes of Antioxidant Constituents in Pineapple (Ananas comosus) Residue during Drying Process. Industrial Crops and Products. 50: 557-562. DOI: 10.1016/j.indcrop.2013.08.001.

Putri, D. A., A. Ulfi, A. S. Purnomo, and S. Fatmawati. 2018. Antioxidant and Antibacterial Activities of Ananas Comosus Peel Extracts. Mal. J. Fund. Appl. Sci. 14(2): 307-311.

Alothman, M., R. Bhat, and A. A. Karim. 2009. Antioxidant Capacity and Phenolic Content of Selected Tropical Fruits from Malaysia, Extracted with Different Solvents. Food Chemistry. 115(3): 785-788. DOI: 10.1016/j.foodchem.2008.12.005.

Jovanović, M., M. Milutinović, M. Kostić, B. Miladinović, N. Kitić, S. Branković, and D. Kitić. 2018. Antioxidant Capacity of Pineapple (Ananas comosus (L.) Merr.) Extracts and Juice. Lekovite Sirovine. (38): 27-30. DOI: 10.5937/leksir1838027J.

Miguel, M. G., S. Nunes, S. A. Dandlen, A. M. Cavaco, and M. D. Antunes. 2010. Phenols and Antioxidant Activity of Hydro-alcoholic Extracts of Propolis from Algarve, South of Portugal. Food and Chemical Toxicology. 48(12): 3418-23. DOI: 10.1016/j.fct.2010.09.014.

Nithiyanantham, S., P. Siddhuraju, and G. Francis. 2013. A Promising Approach to Enhance the Total Phenolic Content and Antioxidant Activity of Raw and Processed Jatropha Curcas L. Kernel Meal Extracts. Industrial Crops and Products. 43: 261-269. DOI: 10.1016/j.indcrop.2012.07.040.

Kaneria, M. J. and S. V. Chanda. 2012. The Effect of Sequential Fractionation Technique on the Various Efficacies of Pomegranate (Punica granatum L.). Food Analytical Methods. 6(1): 164-175. DOI: 10.1007/s12161-012-9412-8.

Downloads

Published

2020-05-22

Issue

Section

Science and Engineering

How to Cite

STATISTICAL OPTIMIZATION AND CHARACTERIZATION OF ACOUSTICALLY EXTRACTED ANANAS COMOSUS PEEL POWDER WITH ENHANCED ANTIOXIDANT CAPACITY. (2020). Jurnal Teknologi, 82(4). https://doi.org/10.11113/jt.v82.14486