PREPARATION OF CASTOR-BASED POLYURETHANE COMPOSITES FILLED WITH WASTE CARBON TYRES (WCT) AS GROUTING MATERIAL

Authors

  • Nur Izzah Atirah Mat Hussain Polymer Science and Technology Department, Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam, Malaysia
  • Noor Najmi Bonnia Materials Science and Technology Department, Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam, Malaysia http://orcid.org/0000-0001-9550-8445
  • Radin Siti Fazlina Nazrah Hirzin Polymer Science and Technology Department, Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam, Malaysia
  • Ernie Suzana Ali Applied Physic Department, Faculty of Science and Technology, Universiti Sains Islam, Malaysia
  • Suzana Ratim Materials Science and Technology Department, Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam, Malaysia

DOI:

https://doi.org/10.11113/jt.v82.14535

Keywords:

Castor-based polyurethane composite (CPUC), waste carbon tyres (WCT), rheology, compression strength, thermal stability

Abstract

This research focused on the fabrication of castor-based polyurethane composite (CPUC) filled with waste carbon tyres (WCT) with particle size of 200 µm that acts as reinforcing filler. WCT was first sieved using a sieving machine to obtain uniform particle size. WCT loading was varied at 0wt%, 2wt%, 4wt% and 6wt%. The effect of WCT loading in CPUC was evaluated based on their foam reaction time, apparent density, rheology, compression strength, morphology and thermal properties. The foam reaction time of CPUC achieved was in the range of industrial PU grout’s properties. The rheology index and compression strength of CPUC decreased with increasing WCT loading. CPUC with 2wt% of WCT loading achieved the optimum compression strength where it increased from 2.58 MPa to 3.39 MPa with the improvement of 31.40% compared to neat PU. FESEM micrograph showed that CPUC consists of closed foam cell indicating the rigidity of the CPUC. The addition of 2wt% of WCT resulted in achieving the optimum thermal stability of CPUC where CPUC2 had the highest char residue content. The high residue content indicated that CPUC2 had the lowest decomposition of elements as WCT acted as heat barrier in CPUC matrix thus increasing the thermal stability of CPUC2.

Author Biographies

  • Noor Najmi Bonnia, Materials Science and Technology Department, Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam, Malaysia

    Materials Science and Technology,

    Faculty of Applied Sciences, UiTM Shah Alam 40450 Selangor.

  • Ernie Suzana Ali, Applied Physic Department, Faculty of Science and Technology, Universiti Sains Islam, Malaysia
    FACULTY OF SCIENCE AND TECHNOLOGY ,UNIVERSITI SAINS ISLAM MALAYSIA, BANDAR BARU NILAI, 71800, NILAI, NEGERI SEMBILAN
  • Suzana Ratim, Materials Science and Technology Department, Faculty of Applied Sciences, Universiti Teknologi MARA Shah Alam, Malaysia

    Materials Science and Technology,

    Faculty of Applied Sciences, UiTM Shah Alam 40450 Selangor.

References

Clemitson, I. R. 2015. Castable Polyurethane Elastomers. CRC Press.

Yang, Z., Zhang, X., Liu, X., Guan, X., Zhang, C., and Niu, Y. 2017. Flexible and Stretchable Polyurethane/Waterglass Grouting. Material Construction and Building Materials. 138: 240-245.

DOI: http://dx.doi.org/10.1016/j.conbuildmat.2017.01.113.

Bodi, J., Bodi, Z., Scucka, J., and Martinec, P. 2012. Polyurethane Grouting Technologies. Polyurethane. 307-337.

DOI: http://dx.doi.org/10.5772/35791.

Xiong, L. W. and Badri, K. 2018. Preparation of Polyurethane Composites with Activated Carbon Black as the Reinforcing Filler. Journal of Polymer Science and Technology. 3(1): 11-18.

Marhoon, I. I. 2017. Mechanical and Physical Properties of Polyurethane Composites Reinforced with Carbon Black N990 Particles. International Journal of Scientific & Technology Research. 6(12): 225-228.

Komameni, S. 1992. Nanocomposites. Journal of Materials. Chemistry. 2(12).

Rothon, R. N. 2002. Particulate Fillers for Polymers. Vol. 12. United Kingdom: iSmithers Rapra Publisher.

Miandad, R., Barakat, M. A., and Aburiazaiza, A. A. 2017. Effect of Plastic Waste Types on Pyrolysis Liquid Oil. International Journal of Biodeterioration & Biodegradation. 119: 239-252.

Fakhar, A. M. and Asmaniza, A. 2016. Road Maintenance Experience Using Polyurethane (PU) Foam Injection System and Geocrete Soil Stabilization as Ground Rehabilitation. IOP Conference Series: Materials Science and Engineering. 136

DOI: http://dx.doi.org/10.1088/1757-899X/136/1/012004.

Ismawi, D. D. A., Zaeimoedin, T. Z., and Saad, C. S. M. 2010. Recovered Carbon Black From Waste Tyres: Effect on Mechanical Properties of Rubber Compound. Conference Malaysian Science and Technology Congress (MSTC), 2010. Selangor, Malaysia. November 2010, 1-11.

DOI: http://dx.doi.org/10.13140/RG.2.1.4274.6482.

Hussain, N. I. A. M., Bonnia, N. N., Hirzin, R. S. F. N., Ali, E. S., and Zawawi, E. Z. E. 2019. Effect of NCO/OH Ratio on Physical and Mechanical Properties of Castor-based Polyurethane Grouting Materials. Journal of Physics: Conference Series. 1349: 012-113.

DOI: http://dx.doi.org/10.1088/1742-6596/1349/1/012113.

Khalil, H. A., Noriman, N. Z., Ahmad, M. N., Ratnam, M. M., and Fuaad, N. N. 2007. Polyester Composites Filled Carbon Black and Activated Carbon from Bamboo (Gigantochloa Scortechinii): Physical and Mechanical Properties. Journal of Reinforced Plastics and Composites. 26(3): 305-320.

DOI: http://dx.doi.org/10.1177/0731684407065066.

E. S. Ali and S. A. Zubir. 2016. The Mechanical Properties of Medium Density Rigid Polyurethane. MATEC Web of Conference. 39: 1-5.

DOI: http://dx.doi.org/10.1051/matecconf/20163901009.

Ali, E. S. 2008. Biokomposit Hibrid Poliuretana Berasaskan Minyak Kelapa Sawit Berpengisi Nanozarah Organo-Monmorilonit dan Serabut Tandan Kosong Kelapa Sawit. Thesis dissertation. Universiti Kebangsaan Malaysia.

Francés, A. B. and Banon, M. N. 2014. Effect of Silica Nanoparticles on Polyurethane Foaming Process and Foam Properties. IOP Conference Series: Materials Science and Engineering. 64(1).

DOI: http://dx.doi.org/10.1088/1757-899X/64/1/012020.

Strąkowska, A., Członka, S., and Strzelec, K. 2019. POSS Compounds as Modifiers for Rigid Polyurethane Foams (Composites). Polymers. 11(7): 1092.

DOI: http://dx.doi.org/10.3390/polym11071092.

Song, Z. L., Ma, L. Q., Wu, Z. J. and He, D. P. 2000. Effects of Viscosity on Cellular Structure of Foamed Aluminum In Foaming Process. Journal of Materials Science. 35: 15-20.

DOI: http://dx.doi.org/10.1016/j.indcrop.2014.11.053.

Suleman, S., Khan, S. M., Jamil, T., Aleem, W., Shafiq, M., and Gull, N. 2014. Synthesis and Characterization of Flexible and Rigid Polyurethane Foam. Asian Journal of Applied Sciences. 2(5).

Alchemy-Spetec. Retrieved from https://alchemy-spetec.com/up-content/uploads/03-64-01-Injection-Grouting-Hydrophilic-and-Hydrophobic.pdf

Kim, S. H., Kim, B. K. and Lim, H. 2008. Effect of Isocyanate Index on the Properties of Rigid Polyurethane Foams Blown By HFC 365mfc. Macromolecular Research. 16(5): 467-472.

DOI: http://dx.doi.org/10.1007/BF03218546.

Jassim, M. S. 2015. Studying Some Properties of Unsaturated Polyester Composite Reinforced by Carbon Black Particulate. Journal of University of Babylon. 23(2): 271-275.

SikaFix HH Hydrophilic. Retrieved from https://usa.sika.com/en/construction/department of-transportation/grouts/polyurethane-grouts/sikafix-hh-hydrophilic.html.

Wei, Y., Wand, F., Gao, X., and Zhang, Y. 2017. Microstructure and Fatigue Performance of Polyurethane Grout Materials under Compression. Journal of Materials in Civil Engineering. 29(9).

Wypych, G. 2017. Handbook of Foaming and Blowing Agents. Canada: ChemTec Publishing.

Mosiewicki, M. A., Arciprete, G. A. D., Aranguren, M. I., and Marcovich, N. E. 2009. Polyurethane Foams Obtained From Castor Oil-based Polyol and Filled with Wood Flour. Journal of Composite Materials. 43(25): 3057-3072.

Zhang, Q., Hu, X. M., Wu, M. Y., Zhao, Y. Y., and Yu, C. 2018. Effects of Different Catalysts on the Structure and Properties of Polyurethane/Water Glass Grouting Materials. Journal of Applied Polymer Science. 135(27): 460-464.

DOI: http://dx.doi.org/10.1002/app.46460

Hamilton, A. R., Thomsen, O. T., Madaleno, L. A., Jensen, L. R., Rauhe, J. C. M., and Pyrz, R. 2013. Evaluation of the Anisotropic Mechanical Properties of Reinforced Polyurethane Foams. Composite, Science Technology. 87: 210-217.

Qi, X., Zhang, Y., Chang, C., Luo, X., and Li, Y. 2018. Thermal, Mechanical, and Morphological Properties O=of Rigid Crude Glycerolâ€Based Polyurethane Foams Reinforced with Nanoclay and Microcrystalline Cellulose. European Journal of Lipid Science and Technology. 120(5).

Saint-Michel, F., Chazeau, L., and Cavaillé, J. Y. 2006. Mechanical Properties of High Density Polyurethane Foams: II Effect of the Filler Size. Composites Science and Technology. 66(15): 2709-2718.

Maharsia, R. R. and Jerro, H. D. 2007. Enhancing Tensile Strength and Toughness in Syntactic Foams through Nanoclay Reinforcement. Materials Science and Engineering. 454: 416-422.

DOI: http://dx.doi.org/10.1016/j.msea.2006.11.121.

Shutov, F. A. 1991. Cellular Structure and Properties of Foamed Polymers. Handbook of Polymeric Foams and Foam Technology. 17-46.

Bera, T., Acharya, S. K., and Mishra, P. 2018. Synthesis, Mechanical and Thermal Properties of Carbon Black/Epoxy Composites. International Journal of Engineering, Science and Technology. 10(4): 12-20.

Kairyte, A. and Vaitkus, S. Composites of Rigid Polyurethane Foams Reinforced with POSS.

Downloads

Published

2020-07-20

Issue

Section

Science and Engineering

How to Cite

PREPARATION OF CASTOR-BASED POLYURETHANE COMPOSITES FILLED WITH WASTE CARBON TYRES (WCT) AS GROUTING MATERIAL. (2020). Jurnal Teknologi, 82(5). https://doi.org/10.11113/jt.v82.14535