INDUSTRIAL ASSESSMENT OF BIOPATTERN IN THE APPLICATION OF CENTRIFUGAL BLOWER DESIGN AND HEAT INSULATION SYSTEM OF EXTRUDER

Authors

  • Chin Toong Foo Universiti Tun Hussein Onn Malaysia
  • Badrul Omar Universiti Tun Hussein Onn Malaysia
  • Azlis Sani Jalil Universiti Tun Hussein Onn Malaysia

DOI:

https://doi.org/10.11113/jt.v82.14536

Keywords:

TRIZ, SAPPhIRE, pattern language, centrifugal blower, heat insulation

Abstract

BioPattern is a novel ideation tool for Bio-Inspired Design, built based on Theory of Inventive Problem Solving, SAPPhIRE Model of Causality, and pattern language. It has an ontology, known as pattern-based ontology, and a sustainability evaluation, known as Ideal Chart. However, this framework has not been tested yet to solve actual industrial problems. Therefore, this article is to present the results and analysis of the industrial case studies conducted to assess this biomimicry framework. Two different industries are selected. The industries presented a problem faced by each respective industry and the problems are to be solved by BioPattern. According to the constraints set by the industries, a suitable solution is found in the ontology while the concept generated is further evaluated by Ideal Chart. Based on the solutions produced from the case studies, BioPattern is found to be able to suggest technological solutions that are applicable in the industrial level with nature’s strategies. It can be concluded that BioPattern is able to ease ideation by providing innovative ideas and sustainable inspiration from nature.

Author Biographies

  • Badrul Omar, Universiti Tun Hussein Onn Malaysia

    Department of Material and Engineering Design, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia

    Professor

  • Azlis Sani Jalil, Universiti Tun Hussein Onn Malaysia

    Department of Manufacturing and Industrial Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia

    Dr

References

Bar-Cohen, Y. 2006. Biomimetics - Using Nature to Inspire Human Innovation. Bioinspiration and Biomimetics. 1(1): 1-12.

DOI: http://dx.doi.org/10.1088/1748-3182/1/1/P01.

Thomas, D. B., D. T. Ksepka and R. E. Fordyce. 2011. Penguin Heat-retention Structures Evolved in a Greenhouse Earth. Biol. Lett. 7(3): 461-464.

DOI: http://dx.doi.org/10.1098/rsbl.2010.0993.

Stevens, E. D., J. W. Kanwisher and F. G. Carey. 2000. Muscle Temperature in Free-swimming Giant Atlantic Bluefin Tuna (Thunnus thynnus L.). J. Therm. Biol. 25(6): 419-423.

DOI: http://dx.doi.org/10.1016/S0306-4565(00)00004-8.

Stevens, E. D. and J. Kendall. 1974. Vascular Anatomy of the Counter-current Heat Exchanger of Skipjack Tuna. J. Exp. Biol. 61: 145-153.

Kleineidam, C., R. Ernst and F. Roces. 2001. Wind-induced Ventilation of the Giant Nests of the Leaf-cutting Ant Atta Vollenweideri. Naturwissenschaften. 88(7): 301-305.

DOI: http://dx.doi.org/10.1007/s001140100235.

Ocko, S. A. et al. 2017. Solar-powered Ventilation of African Termite Mounds. J. Exp. Biol. 220(18): 3260-3269.

DOI: http://dx.doi.org/10.1242/jeb.160895.

Vogel, S., C. P. Ellington and D. L. Kilgore. 1973. Wind-Induced Ventilation of the Burrow of the Prairie-Dog, Cynomys Ludovicianus. J. Comp. Physiol. 85: 1-14.

Pugno, N. M. 2007. Velcro ® Nonlinear Mechanics. Appl. Phys. Lett. 90(121918): 1-2.

DOI: http://dx.doi.org/10.1063/1.2715478.

Elia, E. D., S. Eslava, M. Miranda, T. K. Georgiou and E. Saiz. 2016. Autonomous Self-healing Structural Composites with Bio-Inspired Design. Nat. Publ. Gr. 6(25059): 1-11.

DOI: http://dx.doi.org/10.1038/srep25059.

Mencattelli, L., J. Tang, Y. Swolfs, L. Gorbatikh and S. T. Pinho. 2019. Bio-inspired Design for Enhanced Damage Tolerance of Self-reinforced Polypropylene/Carbon Fibre Polypropylene Hybrid Composites. Compos. Part A, 121(2019): 341-352.

DOI: http://dx.doi.org/10.1016/j.compositesa.2019.03.028.

Chen, Y. et al. 2018. Bio-Inspired Underwater Super Oil-Repellent Coatings for Anti-Oil Pollution. Langmuir. 34(21): 1-23.

DOI: http://dx.doi.org/10.1021/acs.langmuir.8b01061.

Wu, H., Z. Shi, X. Zhang, A. Mateen, S. Xiao and F. Zhang. 2019. Applied Surface Science Achieving an Acid Resistant Surface on Magnesium Alloy Via Bio-inspired Design. Appl. Surf. Sci. 478(2019): 150-161.

DOI: http://dx.doi.org/10.1016/j.apsusc.2019.01.181.

Dave, T. and A. Layton. 2019. Bio-inspired Design for Resilient Water Distribution Networks. Procedia CIRP. 80: 275-280.

DOI: http://dx.doi.org/10.1016/j.procir.2019.01.020.

Panyam, V., H. Huang, K. Davis and A. Layton. 2019. Bio-inspired Design for Robust Power Grid Networks. Appl. Energy. 251(2019): 1-13.

DOI: http://dx.doi.org/10.1016/j.apenergy.2019.113349.

Zhao, Y. et al. 2017. Bio-inspired Reversible Underwater Adhesive. Nat. Commun. 8(2218): 1-8.

DOI: http://dx.doi.org/10.1038/s41467-017-02387-2.

Nagel, J. K. S. 2014. A Thesaurus for Bioinspired Engineering Design. Biologically Inspired Design. Springer London Heidelberg New York Dordrecht. 63-94.

DOI: http://dx.doi.org/10.1007/978-1-4471-5248-4.

Vincent, J. F. V. 2016. Research and Practice on the Theory of Inventive Problem Solving (TRIZ). 1-11.

DOI: http://dx.doi.org/10.1007/978-3-319-31782-3.

Hoeller, N. et al. 2007. Patterns from Nature. Proc. SEM Annu. Conf. Expo. Exp. Appl. Mech. 2007. 3: 1481-1491.

Vattam, S., B. Wiltgen, M. Helms, A. Goel and J. Yen. 2010. DANE: Fostering Creativity in and through Biologically Inspired Design. Proc. First Int. Conf. Des. Creat. 8: 115-122.

Helfman, C. Y., Y. Reich and S. Greenberg. 2014. Biomimetics: Structure–function Patterns Approach. J. Mech. Des. 136(11): 1-11.

DOI: http://dx.doi.org/10.1115/1.4028169

Foo, C. T., B. Omar and A. Jalil. 2019. Biomimicry – Core Stages, Design Process, and Gaps. Int. J. Eng. Technol. 8(1.1): 15-25.

Ekmekci, I. and M. Koksal. 2015. Triz Methodology and an Application Example for Product Development. Procedia - Soc. Behav. Sci. 195: 2689-2698.

DOI: http://dx.doi.org/10.1016/j.sbspro.2015.06.481.

Altshuller, G. S. 2007. The Innovation Algorithm: TRIZ, Systematic Innovation and Technical creativity. 2nd ed. Technical Innovation Center Inc.

Altshuller, G. S. 2004. And Suddenly the Inventor Appeared: TRIZ, the Theory of Inventive Problem Solving. Technical Innovation Center, Inc.

Srinivasan, V. and A. Chakrabarti. 2009. Sapphire – An Approach to Analysis and Synthesis. Iced’09. 417-428.

Chakrabarti, A., P. Sarkar, B. Leelavathamma and B. S. Nataraju. 2005. A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas. Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM. 19(2): 113-132.

DOI: http://dx.doi.org/10.1017/S0890060405050109.

Alexander, C., S. Ishikawa and M. Silverstein. 1977. A Pattern Language: Towns, Buildings, Construction. London, New York: Oxford University Press.

DOI: http://dx.doi.org/10.2307/1574526.

Vincent, J. F. V., O. A. Bogatyreva, N. R. Bogatyrev, A. Bowyer, and A.-K. Pahl. 2006. Biomimetics: Its Practice And Theory. J. R. Soc. Interface. 3(9): 471-482.

DOI: 10.1098/rsif.2006.0127.

Baldussu, A. and G. Cascini. 2015. About Integration Opportunities between TRIZ and Biomimetics for Inventive Design. Procedia Eng. 131: 3-13.

Helfman Cohen Y. and Y. Reich. 2016. Biomimetic Design Method for Innovation and Sustainability. Springer International Publishing Switzerland.

DOI: 10.1007/978-3-319-33997-9.

Ashby, M. F. 2005. Materials Selection in Mechanical Design. 3rd ed. Italy: Elsevier.

Mechanicalinventions, “Extrusion,†Mechanical Engineering, 2019. [Online]. Available: http://mechanicalinventions.blogspot.com/2016/04/plastic-extrusion-process-principles.html. [Accessed: 12-Nov-2019].

Yao, H. et al. 2010. Protection Mechanisms of the Iron-plated Armor of a Deep-sea Hydrothermal Vent Gastropod. Proc. Natl. Acad. Sci. U. S. A. 107(3): 987-992.

DOI: http://dx.doi.org/10.1073/pnas.0912988107.

Warén, A. 2010. Tech Snail Shell. [Online]. Available: https://www.cbc.ca/news/technology/snail-s-iron-armour-eyed-by-military-1.941044.

Weathers, W. W., R. S. Seymour and R. V. Baudinette. 1993. Energetics of Mound-tending Behaviour in the Mallefowl, Leipoa ocellata (Megapodiidae). Anim. Behav. 45(2): 333-341.

DOI: http://dx.doi.org/10.1006/anbe.1993.1038.

Halasz, P. 2007. Malleefowl Pengo.

Leitch, E. 2017 Barrel Cactus.

Benford, P. 2017. Infrared image of a cactus shows the rib with different temperatures.

Nobel, P. S. 1978. Surface Temperatures of Cacti - Influences of Environmental and Morphological Factors. Ecology. 59(5): 986-995.

Lewis, D. A. and P. S. Nobel. 1977. Thermal Energy Exchange Model and Water Loss of a Barrel Cactus, Ferocactus acanthodes. Plant Physiol. 60: 609-616.

DOI: http://dx.doi.org/10.1104/pp.60.4.609.

Downloads

Published

2020-08-11

Issue

Section

Science and Engineering

How to Cite

INDUSTRIAL ASSESSMENT OF BIOPATTERN IN THE APPLICATION OF CENTRIFUGAL BLOWER DESIGN AND HEAT INSULATION SYSTEM OF EXTRUDER. (2020). Jurnal Teknologi, 82(5). https://doi.org/10.11113/jt.v82.14536