EMULSION LIQUID MEMBRANE FOR HEAVY METALS REMOVAL: EMULSION BREAKING STUDY

Authors

  • Adhi Kusumastuti Faculty of Engineering, Universitas Negeri Semarang, Kampus UNNES Sekaran, 50229, Semarang, Indonesia
  • Samsudin Anis Faculty of Engineering, Universitas Negeri Semarang, Kampus UNNES Sekaran, 50229, Semarang, Indonesia
  • A. L. Ahmad School of Chemical Engineering, Engineering Campus, USM, 14300, Nibong Tebal, Penang, Malaysia
  • B. S. Ooi School of Chemical Engineering, Engineering Campus, USM, 14300, Nibong Tebal, Penang, Malaysia
  • M. M. H. Shah Buddin Faculty of Chemical Engineering, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia

DOI:

https://doi.org/10.11113/jt.v82.14539

Keywords:

Emulsion liquid membrane, heavy metals, removal, emulsion breaking, demulsification

Abstract

Emulsion liquid membrane (ELM) method has been widely applied in the separation process as the alternative of liquid/liquid extraction. This study compared the application of microwave, ultrasonic probe, and centrifuge in breaking the used emulsion. Demulsification efficiency was investigated in term of water content in the membrane phase solution before and after demulsification. The results showed that the use of microwave to break the used emulsion provided demulsification efficiency of 98.10%, while application of ultrasonic probe was able to break emulsion at efficiency of 98.45%. In the meantime, demulsification efficiency of almost 97% was achieved when employing centrifuge at centrifugation speed of 3000 rpm. Considering the energy consumption, it is recommended to apply microwave irradiation for emulsion breaking. It could save energy up to 97% and 99% compared to that of ultrasonic probe and centrifuge, respectively.

References

Kumar, A., Thakur, A. and Panesar, P. S. 2019. A Review on Emulsion Liquid Membrane (ELM) for the Treatment of Various Industrial Effluent Streams. Reviews in Environmental Science and Bio/Technology. 18(1): 153-182.

DOI: 10.1007/s11157-019-09492-2.

Chakraborty, M., Bhattacharya, C. and Datta, S. 2010. Chapter 4 - Emulsion Liquid Membranes: Definitions and Classification, Theories, Module Design, Applications, New Directions and Perspectives. Liquid Membranes. S. K. Vladimir, Editor. Elsevier: Amsterdam. 141-199.

Ahmad, A. L., Kusumastuti, A., Derek, C. J. C., & Ooi, B. S. 2011. Emulsion Liquid Membrane for Heavy Metal Removal: An Overview on Emulsion Stabilization and Destabilization. Chemical Engineering Journal. 171(3): 870-882.

DOI: https://doi.org/10.1016/j.cej.2011.05.102.

Kislik, V., ed. 2009. Liquid Membranes: Principles and Applications in Chemical Separations and Wastewater Treatment. Elsevier Science: Amsterdam.

Sengupta, B., Sengupta, R. and Subrahmanyam, N. 2006. Process Intensification of Copper Extraction Using Emulsion Liquid Membranes: Experimental Search for Optimal Conditions. Hydrometallurgy. 84(1-2): 43-53.

DOI: https://doi.org/10.1016/j.hydromet.2006.04.002.

Sengupta, B., Sengupta, R. and Subrahmanyam, N. 2006. Copper Extraction into Emulsion Liquid Membranes using LIX 984N-C®. Hydrometallurgy. 81(1): 67-73.

DOI: https://doi.org/10.1016/j.hydromet.2005.10.002.

Chakraborty, M., Bhattacharya, C. and Datta, S. 2003. Effect of Drop Size Distribution on Mass Transfer Analysis of the Extraction of Nickel(II) by Emulsion Liquid Membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 224(1-3): 65-74.

DOI: https://doi.org/10.1016/S0927-7757(03)00260-7.

Sahoo, G. C. and Dutta, N. N. 1998. Studies on Emulsion Liquid Membrane Extraction of Cephalexin. Journal of Membrane Science. 145(1): 15-26.

DOI: https://doi.org/10.1016/S0376-7388(98)00027-1.

Ahmad, A. L., Kusumastuti, A., Derek, C. J. C., & Ooi, B. S. 2012. Emulsion Liquid Membrane for Cadmium Removal: Studies on Emulsion Diameter and Stability. Desalination. 287: 30-34.

DOI: https://doi.org/10.1016/j.desal.2011.11.002.

Chiha, M., Hamdaoui, O., Ahmedchekkat, F., & Pétrier, C. 2010. Study on Ultrasonically Assisted Emulsification and Recovery of Copper(II) from Wastewater Using an Emulsion Liquid Membrane Process. Ultrasonics Sonochemistry. 17(2): 318-325.

DOI: https://doi.org/10.1016/j.ultsonch.2009.09.001.

Mousavi, S. M., Kiani, S., Farmad, M. R., Hemati, A., & Abbasi, B. 2012. Extraction of Arsenic(V) from Water Using Emulsion Liquid Membrane. Journal of Dispersion Science and Technology. 33(1): 123-129.

DOI: http://doi.org/10.1080/01932691.2010.548230.

Ahmad, A. L., Kusumastuti, A., Derek, C. J. C., & Ooi, B. S. 2013. Emulsion Liquid Membranes for Cadmium Removal: Studies of Extraction Efficiency. Membrane Water Treatment. 4(1): 15.

DOI: 10.12989/mwt.2013.4.1.011.

Kumbasar, R. A. 2009. Extraction and Concentration Study of Cadmium from Zinc Plant Leach Solutions by Emulsion Liquid Membrane Using Trioctylamine as Extractant. Hydrometallurgy. 95(3-4): 290-296.

DOI: https://doi.org/10.1016/j.hydromet.2008.07.001.

Mortaheb, H. R., Kosuge, H., Mokhtarani, B., Amini, M. H., & Banihashemi, H. R. 2009. Study on Removal of Cadmium from Wastewater by Emulsion Liquid Membrane. Journal of Hazardous Materials. 165(1-3): 630-636.

DOI: https://doi.org/10.1016/j.jhazmat.2008.10.039.

García, M. G., Acosta, A. O. and Marchese, J. 2013. Emulsion Liquid Membrane Pertraction of Cr(III) from Aqueous Solutions Using PC-88A as Carrier. Desalination. 318(0): 88-96.

DOI: http://dx.doi.org/10.1016/j.desal.2013.03.025.

Goyal, R. K., Jayakumar, N. S. and Hashim, M. A. 2011. Chromium Removal by Emulsion Liquid Membrane Using [BMIM]+[NTf2]−as Stabilizer and TOMAC as Extractant. Desalination. 278(1-3): 50-56.

DOI: https://doi.org/10.1016/j.desal.2011.05.001.

Zhao, L., Fei, D., Dang, Y., Zhou, X., & Xiao, J. 2010. Studies on the Extraction of Chromium(III) by Emulsion Liquid Membrane. Journal of Hazardous Materials. 178(1-3): 130-135.

DOI: http://dx.doi.org/10.1016/j.jhazmat.2010.01.052.

Valenzuela, F., Araneda, C., Vargas, F., Basualto, C., & Sapag, J. 2009. Liquid Membrane Emulsion Process for Recovering the Copper Content of a Mine Drainage. Chemical Engineering Research and Design. 87(1): 102-108.

DOI: https://doi.org/10.1016/j.cherd.2008.05.010.

Sengupta, B., Bhakhar, M. S. and Sengupta, R. 2009. Extraction of Zinc and Copper-zinc Mixtures from Ammoniacal Solutions into Emulsion Liquid Membranes using LIX 84I®. Hydrometallurgy. 99(1-2): 25-32.

DOI: https://doi.org/10.1016/j.hydromet.2009.05.021.

Tofighy, M. A. and Mohammadi, T. 2011. Adsorption of Divalent Heavy Metal Ions from Water Using Carbon Nanotube Sheets. J Hazard Mater. 185(1): 140-7.

Strausak, D., Mercer, J. F. B., Dieter, H. H., Stremmel, W., & Multhaup, G. 2001. Copper in Disorders with Neurological Symptoms: Alzheimer’s, Menkes, and Wilson Diseases. Brain Research Bulletin. 55(2): 175-185.

DOI: https://doi.org/10.1016/S0361-9230(01)00454-3.

Lu, G., Lu, Q. and Li, P. 1997. Break-down of Liquid Membrane Emulsion Under High Electric Field. Journal of Membrane Science. 128(1): 1-6.

DOI: http://dx.doi.org/10.1016/S0376-7388(96)00298-0.

Zolfaghari, R., Fakhru'l-Razi, A., Luqman Chuah, A., S. E. H. Elnashaie, S., & Pendashteh, A. 2016. Demulsification Techniques of Water-in-Oil and Oil-in-Water Emulsions in Petroleum Industry. Separation and Purification Technology. 170(0): 377-407.

DOI: https://doi.org/10.1016/j.seppur.2016.06.026.

Azizi, K. and Nikazar, M. 2015. Characterization of Chemical Demulsification of Oil in Water Emulsion: Comparison Between a Kinetics Model and Laboratory Experiments. Petroleum Science and Technology. 33(1): 8-14.

DOI: https://doi.org/10.1080/10916466.2014.940088.

Balsamo, M., Erto, A. and Lancia, A. 2017. Chemical Demulsification of Model Water-in-Oil Emulsions with Low Water Content by Means of Ionic Liquids. Brazilian Journal of Chemical Engineering. 34(1): 273-282.

DOI: http://dx.doi.org/10.1590/0104-6632.20170341s20150583.

Nour, A. H., Mohammed, F. S., Yunus, R. M., & Arman, A. 2009. Demulsification of Virgin Coconut Oil by Centrifugation Method: A Feasibility Study. International Journal of Chemical Technology. 1: 59-64.

DOI: https://doi.org/10.3923/ijct.2009.59.64.

Mhatre, S., Vivacqua, V., Ghadiri, M., Abdullah, A. M., Al-Marri, M. J., Hassanpour, A., Hewakandamby, B., Azzopardi, B., & Kermani, B. 2015. Electrostatic Phase Separation: A Review. Chemical Engineering Research and Design. 96(0): 177-195.

DOI: https://doi.org/10.1016/j.cherd.2015.02.012.

Othman, N., Tan, K. S., Noah, N. F. M., Ooi, Z. Y., Norela Jusoh, & Nasruddin, N. A. 2015. Performance of Electrostatic Field in Continuous Demulsification of Simulated Crude Oil Emulsion. Jurnal Teknologi. 74(7): 93-98.

DOI: https://doi.org/10.11113/jt.v74.4705.

Wu, J., Wei, W., Li, S., Zhong, Q., Liu, F., Zheng, J., & Wang, J. 2018. The Effect of Membrane Surface Charges on Demulsification and Fouling Resistance During Emulsion Separation. Journal of Membrane Science. 563(0): 126-133.

DOI: https://doi.org/10.1016/j.memsci.2018.05.065.

Euston, S. R., Finnigan, S. R. and Hirst, R. L. 2001. Heat-Induced Destabilization of Oil-in-Water Emulsions Formed from Hydrolyzed Whey Protein. Journal of Agricultural and Food Chemistry. 49(11): 5576-5583.

DOI: https://doi.org/10.1021/jf0102620.

Chan, C.-C. and Chen, Y.-C. 2002. Demulsification of W/O Emulsions by Microwave Radiation. Separation Science and Technology. 37(15): 3407-3420.

DOI: https://doi.org/10.1081/ss-120014434.

Henry, N. E. 2013. Effects of Microwave Irradiation on the Characteristics of Water-Oil Emulsions. Petroleum Engineering. Master. Nova Scotia: Dalhousie University.

Mohammed, S. A. M. and Mohammed, M. S. 2013. The Application of Microwave Technology in Demulsification of Water-in-Oil Emulsion for Missan Oil Fields. Iraqi Journal of Chemical and Petroleum Engineering. 14(2): 21-27.

Sun, L., Han, P., Yang, L., & Lu, X. 2014. The Dehydration and Demulsification of Waste Oil by Ultrasound. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 36(17): 1843-1849.

DOI: https://doi.org/10.1080/15567036.2011.551921.

Downloads

Published

2020-07-20

Issue

Section

Science and Engineering

How to Cite

EMULSION LIQUID MEMBRANE FOR HEAVY METALS REMOVAL: EMULSION BREAKING STUDY. (2020). Jurnal Teknologi, 82(5). https://doi.org/10.11113/jt.v82.14539