• Siti Nur Khairunisa Mohd Amir Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, 54100, Kuala Lumpur, Malaysia http://orcid.org/0000-0001-7918-2385
  • Mariam Firdhaus Mad Nordin Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, 54100, Kuala Lumpur, Malaysia http://orcid.org/0000-0001-5822-278X
  • Kamyar Shameli Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, 54100, Kuala Lumpur, Malaysia http://orcid.org/0000-0002-3955-4604
  • Izzati Mohamad Abdul Wahab Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, 54100, Kuala Lumpur, Malaysia http://orcid.org/0000-0002-7556-1035
  • Mariani Abdul Hamid Fakulti Kejuruteraan Kimia & Kejuruteraan Sumber Asli, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia




Keywords, Fractional factorial design, subcritical water extraction, Zingiber zerumbet, zerumbone concentration, antioxidant activity.


Zingiber zerumbet (Z. zerumbet) is recognized for decades for its usability as spice and condiment in food flavoring as well as having high medicinal properties. Up to date, there are limited literature on evaluation of the effects of multiple variables in details especially in pilot-scale subcritical water extraction (SWE) of Z. zerumbet. The aim for this study is to implement the fractional factorial design with five variables which are temperature (100-170°C), time (10-40 minutes), pressure (10-20 bar), particle size (0.89-3.56 mm) and solvent to solid ratio (20-40 ml/g) in SWE of Z. zerumbet. Analysis of variance for all responses stated that temperature, time, particle size and solvent to solid ratio are significant variables. Temperature is the most significant factor for zerumbone concentration and antioxidant activity with a p-value of <0.0001 and 0.0002, respectively. The solvent to solid ratio was the most significant factor for the yield of extraction with a p-value of 0.0002. Time and particle size were significant towards all responses, however pressure was not significant on zerumbone concentration and yield. Thus, the fractional factorial design could give a broad overview in selecting the significant variables for further optimization in SWE from the findings.


Koga, A. Y., Beltrame, F. L., & Pereira, A. V. (2016). Several aspects of Zingiber zerumbet: A review. Brazilian Journal of Pharmacognosy, 26(3), 385–391. https://doi.org/10.1016/j.bjp.2016.01.006

Prakash, R. O., Rabinarayan, A., & Kumar, M. S. (2011). Zingiber zerumbet ( L .) Sm ., a reservoir plant for therapeutic uses : A Review. International Journal of Pharma World Research, 2(2), 1–23.

Hasham-Hisam, R., Noor, N. M., Roslan, M. N., Sarmidi, M. R., & Aziz, R. A. (2011). Optimization of extraction conditions of antioxidant activity from Zingiber zerumbet oleoresin. Journal of Applied Sciences, 11(13), 2394–2399. https://doi.org/10.3923/jas.2011.2394.2399

Sidahmed, H. M. A., Hashim, N. M., Abdulla, M. A., Ali, H. M., Mohan, S., Abdelwahab, S. I., … Vadivelu, J. (2015). Antisecretory, gastroprotective, antioxidant and anti-helicobcter pylori activity of zerumbone from zingiber zerumbet (L.) smith. PLoS ONE, 10(3), 1–21. https://doi.org/10.1371/journal.pone.0121060

Hossain, M. E., Bhattacharjee, S. C., & Enayetul Islam, M. D. (2011). Chemical Investigation on Zingiber zerumbet Sm. Frontiers in Natural Product Chemistry, 1, 185–187. https://doi.org/10.2174/978160805212710501010185

Noor Mohamad, N. F., & Sirat, H. M. (2016). Isolation , characterization and modification of zerumbone from Zingiber zerumbet. EProceedings Chemistry 1, 1, 7–10.

Rumiza, A. R., & Azimathol, H. L. P. (2005). The Antiprofilerative Effect of Zingiber zerumbet Extracts Fractions on the Growth of Human Breast Carcinoma Call Lines. Malaysian Journal of Pharmaceutial Sciences, 3(1), 45–52.

Singh, C. B., Nongalleima, K., Brojendrosingh, S., Ningombam, S., Lokendrajit, N., & Singh, L. W. (2012). Biological and chemical properties of Zingiber zerumbet Smith: A review. Phytochemistry Reviews, 11(1), 113–125. https://doi.org/10.1007/s11101-011-9222-4

Chang, C. J., Liou, S. S., Tzeng, T. F., & Liu, I. M. (2014). The ethanol extract of Zingiber zerumbet Smith attenuates non-alcoholic fatty liver disease in hamsters fed on high-fat diet. Food and Chemical Toxicology, 65, 33–42. https://doi.org/10.1016/j.fct.2013.11.048

Ghasemzadeh, A., Jaafar, H. Z. E., Rahmat, A., & Swamy, M. K. (2017). Optimization of microwave-assisted extraction of zerumbone from Zingiber zerumbet L. rhizome and evaluation of antiproliferative activity of optimized extracts. Chemistry Central Journal, 11(5), 1–10. https://doi.org/10.1186/s13065-016-0235-3

Nik Norulaini, N. A., Anuar, O., Omar, A. K. M., Alkarkhi, A. F. M., Setianto, W. B., Fatehah, M. O., … Zaidul, I. S. M. (2009). Optimization of sc co2 extraction of zerumbone from zingiber zerumbet. Food Chemistry, 114(2009), 702–705.

Pavlić, B., Vidović, S., Vladić, J., Radosavljević, R., Cindrić, M., & Zeković, Z. (2016). Subcritical water extraction of sage (Salvia officinalis L.) by-products - Process optimization by response surface methodology. Journal of Supercritical Fluids, 116, 36–45. https://doi.org/10.1016/j.supflu.2016.04.005

Shalmashi, A., Golmohammad, F., & Eikani, M. H. (2008). Subcritical water extraction of caffeine from black tea leaf of Iran. Journal of Food Process Engineering, 31(3), 330–338. https://doi.org/10.1111/j.1745-4530.2007.00156.x

Zeković, Z., Vidović, S., Vladić, J., Radosavljević, R., Cvejin, A., Elgndi, M. A., & Pavlić, B. (2014). Optimization of subcritical water extraction of antioxidants from Coriandrum sativum seeds by response surface methodology. Journal of Supercritical Fluids, 95, 560–566. https://doi.org/10.1016/j.supflu.2014.09.004

Anurukvorakun, O. (2013). Factorial Design Applied to Subcritical Water Extraction for the Investigation of Flavonoids and Antioxidant Capacity of Gynura calciphila Kerr. Mahidol University Journal of Pharmaceutical Sciences, 40(2), 7–16.

Mohd Rasidek, N. A., Mad Nordin, M. F., Yusof, Y. A., Tokuyama, H., & Nagatsu, Y. (2018). Effect of temperature on rheology behaviour of banana peel pectin extracted using hot compressed water. Jurnal Teknologi, 80(3), 97–103. https://doi.org/10.11113/jt.v80.11467

Sandadi, S., Ensari, S., & Kearns, B. (2006). Application of fractional factorial designs to screen active factors for antibody production by Chinese hamster ovary cells. Biotechnology Progress, 22(2), 595–600. https://doi.org/10.1021/bp050300q

Wong, W. H., Lee, W. X., Ramanan, R. N., Tee, L. H., Kong, K. W., Galanakis, C. M., … Prasad, K. N. (2014). Two level half factorial design for the extraction of phenolics, flavonoids and antioxidants recovery from palm kernel by-product. Industrial Crops and Products, 63, 238–248. https://doi.org///dx.doi.org/10.1016/j.indcrop.2014.09.049

Arinkoola, A. O., & Ogbe, D. O. (2015). Examination of Experimental Designs and Response Surface Methods for Uncertainty Analysis of Production Forecast: A Niger Delta Case Study. Journal of Petroleum Engineering, 2015, 1–16. https://doi.org/10.1155/2015/714541

Telford, J. K. (2007). A Brief Introduction to Design of Experiments. Johns Hopkins APL Technical Digest (Applied Physics Laboratory), 27(3), 224–232.

Zhang, M., Tang, J., Mujumdar, A. S., & Wang, S. (2006). Trends in microwave-related drying of fruits and vegetables. Trends in Food Science and Technology, 17(10), 524–534. https://doi.org/10.1016/j.tifs.2006.04.011

Chien, T. Y., Chen, L. G., Lee, C. J., Lee, F. Y., & Wang, C. C. (2008). Anti-inflammatory constituents of Zingiber zerumbet. Food Chemistry, 110(3), 584–589. https://doi.org/10.1016/j.foodchem.2008.02.038

Alghoul, Z. M., Ogden, P. B., & Dorsey, J. G. (2017). Characterization of the polarity of subcritical water. Journal of Chromatography A, 1486, 42–49. https://doi.org/10.1016/j.chroma.2016.12.072

Mustafa, A., & Turner, C. (2011). Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Analytica Chimica Acta, 703(1), 8–18. https://doi.org/10.1016/j.aca.2011.07.018

Plaza, M., & Turner, C. (2015). Pressurized hot water extraction of bioactives. TrAC - Trends in Analytical Chemistry, 71, 39–54. https://doi.org/10.1016/j.trac.2015.02.022

Benjamin, M., Stéphane, R., Gérard, V., & Pierre-Yves, P. (2017). Pressurized water extraction of isoflavones by experimental design from soybean flour and Soybean Protein Isolate. Food Chemistry, 214, 9–15. https://doi.org/10.1016/j.foodchem.2016.07.053

Lefsih, K., Giacomazza, D., Dahmoune, F., Mangione, M. R., Bulone, D., San Biagio, P. L., … Madani, K. (2017). Pectin from Opuntia ficus indica: Optimization of microwave-assisted extraction and preliminary characterization. Food Chemistry, 221, 91–99. https://doi.org/10.1016/j.foodchem.2016.10.073

Xu, D. P., Zheng, J., Zhou, Y., Li, Y., Li, S., & Li, H. Bin. (2017). Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chemistry, 217, 552–559. https://doi.org/10.1016/j.foodchem.2016.09.013

Mohamad Abdul Wahab, I., Mad Nordin, M. F., & Mohd Amir, S. N. K. (2019). Subcritical water extraction ( SWE ) of Zingiber zerumbet using two level full factorial design. Malaysian Journal of Fundamental and Applied Sciences, 15(2), 139–145.

Mottahedin, P., Haghighi Asl, A., & Khajenoori, M. (2016). Extraction of Curcumin and Essential Oil from Curcuma longa L. by Subcritical Water via Response Surface Methodology. Journal of Food Processing and Preservation, 00, 1–9. https://doi.org/10.1111/jfpp.13095

Tian, Y., Wang, Y., Ma, Y., Zhu, P., He, J., & Lei, J. (2017). Optimization of Subcritical Water Extraction of Resveratrol from Grape Seeds by Response Surface Methodology. Applied Sciences, 7(4), 321. https://doi.org/10.3390/app7040321

Abdul, A. B., AbdelWahab, S. I., Al-Zubairi, A. S., Elhassan, M. M., & Murali, S. M. (2008). Anticancer and Antimicrobial Activities of Zerumbone from the Rhizomes of Zingiber zerumbet. International Journal of Pharmacology, 4(4), 301–304. https://doi.org/10.3923/ijp.2008.301.304

Nag, A., Bandyopadhyay, M., & Mukherjee, A. (2013). Antioxidant Activities and Cytotoxicity of Zingiber zerumbet ( L .) Smith Rhizome. Journal of Pharmacognosy and Phytochemistry, 2(3), 102–108.

Wiboonsirikul, J., & Adachi, S. (2008). Extraction of Functional Substances from Agricultural Products or By-products by Subcritical Water Treatment. Food Science and Technology Research, 14(4), 319–328. https://doi.org/10.3136/fstr.14.319

Ko, M.-J., Kwon, H.-L., & Chung, M.-S. (2016). Pilot-scale subcritical water extraction of flavonoids from satsuma mandarin (Citrus unshiu Markovich) peel. Innovative Food Science & Emerging Technologies, 38, 175–181. https://doi.org/10.1016/j.ifset.2016.10.008

Valizadeh Kiamahalleh, M., Najafpour-Darzi, G., Rahimnejad, M., Moghadamnia, A. A., & Valizadeh Kiamahalleh, M. (2016). High performance curcumin subcritical water extraction from turmeric (Curcuma longa L.). Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1022, 191–198. https://doi.org/10.1016/j.jchromb.2016.04.021






Science and Engineering