HEAT TRANSFER ENHANCEMENT USING PASSIVE TECHNIQUE: REVIEW

Authors

  • Adnan Rasheed Akeedy Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Hajar Alias Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor https://orcid.org/0000-0003-4244-0576
  • Sami D. Salman Al- Khwarizmi College of Engineering, University of Baghdad, Baghdad

DOI:

https://doi.org/10.11113/jurnalteknologi.v83.14546

Keywords:

Heat exhanger, heat transfer enhancement, nanoparticles, nanofluids, microtube, microchannel

Abstract

Preserving and saving energy have never been more important, thus the requirement for more effective and efficient heat exchangers has never been more important. However, in order to pave the way for the proposal of a truly efficient technique, there is a need to understand the shortcomings and strengths of various aspects of heat transfer techniques. This review aims to systematically identify these characteristics two of the most popular passive heat transfer techniques: nanofluids and helically coiled tubes. The review indicated that nanoparticles improve thermal conductivity of base fluid and that the nanoparticle size, as well as the concentrations of the nanoparticles plays a major role in the effectiveness of the nanofluids. Regarding the helically coiled tubes, it was discovered that the use of a coiled tube produces secondary flows, which ultimately improves the heat transfer enhancement. The third part of the review focused on microchannels and microtubes. This is mainly due to the growing need and requirement of smaller and more compact thermal cooling systems. Thus, ultimately the result of the review indicates that a combination of all these three techniques can lead to a compact and minimized heat exchanger that uses the benefits obtained from both nanofluids and helically coiled tubes in order to improve the heat transfer rate of the thermal systems.

References

ŞIMŞEK, E., COSKUN, S., OKUTUCU-ÖZYURT, T. & UNALAN, H. E. 2018. Heat transfer enhancement by silver nanowire suspensions in microchannel heat sinks. International Journal of Thermal Sciences, 123, 1-13.

SHEIKHOLESLAMI, M., ASHORYNEJAD, H. & RANA, P. 2016. Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation. Journal of Molecular Liquids, 214, 86-95.

SHEIKHOLESLAMI, M., GORJI-BANDPY, M. & GANJI, D. D. 2015. Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices. Renewable and Sustainable Energy Reviews, 49, 444-469.

SHEIKHOLESLAMI, M. & BHATTI, M. 2017. Active method for nanofluid heat transfer enhancement by means of EHD. International Journal of Heat and Mass Transfer, 109, 115-122.

ALAM, T. & KIM, M.-H. 2018. A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications. Renewable and Sustainable Energy Reviews, 81, 813-839.

SIDIK, N. A. C., MUHAMAD, M. N. A. W., JAPAR, W. M. A. A. & RASID, Z. A. 2017. An overview of passive techniques for heat transfer augmentation in microchannel heat sink. International Communications in Heat and Mass Transfer, 88, 74-83.

RASHIDI, S., ESKANDARIAN, M., MAHIAN, O. & PONCET, S. 2018. Combination of nanofluid and inserts for heat transfer enhancement. Journal of Thermal Analysis and Calorimetry, 1-24.

BIANCO, V., VAFAI, K., MANCA, O. & NARDINI, S. 2015. Heat transfer enhancement with nanofluids, CRC press.

MANETTI, L. L., STEPHEN, M. T., BECK, P. A. & CARDOSO, E. M. 2017. Evaluation of the heat transfer enhancement during pool boiling using low concentrations of Al2O3-water based nanofluid. Experimental Thermal and Fluid Science, 87, 191-200

PRAMUANJAROENKIJ, A., TONGKRATOKE, A. & KAKAÇ, S. 2018. Numerical Study of Mixing Thermal Conductivity Models for Nanofluid Heat Transfer Enhancement. Journal of Engineering Physics and Thermophysics, 91, 104-114.

SUNDAR, L. S., SHARMA, K., SINGH, M. K. & SOUSA, A. 2017. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor–A review. Renewable and Sustainable Energy Reviews, 68, 185-198.

NADOOSHAN, A. A. 2017. An experimental correlation approach for predicting thermal conductivity of water-EG based nanofluids of zinc oxide. Physica E: Low-dimensional Systems and Nanostructures, 87, 15-19.

ASKARI, S., KOOLIVAND, H., POURKHALIL, M., LOTFI, R. & RASHIDI, A. 2017. Investigation of Fe3O4/Graphene nanohybrid heat transfer properties: Experimental approach. International Communications in Heat and Mass Transfer, 87, 30-39.

SHEIKHOLESLAMI, M. & SADOUGHI, M. 2018. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. International Journal of Heat and Mass Transfer, 116, 909-919.

Karimzadehkhouei, M., Sezen, M., Şendur, K., Mengüç, M.P. and Koşar, A., 2017. Subcooled flow boiling heat transfer of γ-Al2O3/water nanofluids in horizontal microtubes and the effect of surface characteristics and nanoparticle deposition. Applied Thermal Engineering, 127,.536-546.

.SHEIKHOLESLAMI, M. & ROKNI, H. B. 2018. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. International Journal of Heat and Mass Transfer, 118, 823-831.

YOU, S., KIM, J. & KIM, K. 2003. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Applied physics letters, 83, 3374-3376.

MYERS JR, P. D., ALAM, T. E., KAMAL, R., GOSWAMI, D. & STEFANAKOS, E. 2016. Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer. Applied energy, 165, 225-233.

SHEIKHOLESLAMI, M., GHASEMI, A., LI, Z., SHAFEE, A. & SALEEM, S. 2018. Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. International Journal of Heat and Mass Transfer, 126, 1252-1264.

AKBARI, O. A., TOGHRAIE, D., KARIMIPOUR, A., MARZBAN, A. & AHMADI, G. R. 2017. The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid. Physica E: Low-Dimensional Systems and Nanostructures, 86, 68-75.

MINKOWYCZ, W., SPARROW, E. M. & ABRAHAM, J. P. 2016. Nanoparticle heat transfer and fluid flow, CRC press.

SHEIKHOLESLAMI, M., HAYAT, T., ALSAEDI, A. & ABELMAN, S. 2017. Numerical analysis of EHD nanofluid force convective heat transfer considering electric field dependent viscosity. International Journal of Heat and Mass Transfer, 108, 2558-2565

ESFE, M. H., AFRAND, M., GHAREHKHANI, S., ROSTAMIAN, H., TOGHRAIE, D. & DAHARI, M. 2016. An experimental study on viscosity of alumina-engine oil: effects of temperature and nanoparticles concentration. International Communications in Heat and Mass Transfer, 76, 202-208

RASHEED, A., ALIAS, H. & SALMAN, S. 2018. Effects of Coil Pitch Spacing on Heat Transfer Performance of Nanofluid Turbulent Flow through Helical Microtube Heat Exchanger. International Journal of Engineering & Technology, 7, 356-360.

FULE, P., BHANVASE, B. & SONAWANE, S. 2017. Experimental investigation of heat transfer enhancement in helical coil heat exchangers using water based CuO nanofluid. Advanced Powder Technology, 28, 2288-2294.

PALANISAMY, K. & KUMAR, P. 2017. Heat transfer enhancement and pressure drop analysis of a cone helical coiled tube heat exchanger using MWCNT/water nanofluid. JOURNAL OF APPLIED FLUID MECHANICS, 10, 7-13.

BAGHERZADEH, F., SAFFAR-AVVAL, M., SEYFI, M. & ABBASSI, A. 2017. Numerical investigation of nanofluid heat transfer in helically coiled tubes using the four-equation model. Advanced Powder Technology, 28, 256-265.

REDDY, V. K., SOMANCHI, N. S., DEVI, S. R., GUGULOTHU, R. & KUMAR, S. P. Heat transfer enhancement in a double pipe heat exchanger using nanofluids. Proceedings of 17th ISME Conference on Advances in Mechanical Engineering, Organized by Department of Mechanical Engineering, Indian Institute of Technology, Delhi on, 2015. 3-4.

SALEM, M., ALI, R., SAKR, R. & ELSHAZLY, K. 2015. Effect of γ-Al2O3/water nanofluid on heat transfer and pressure drop characteristics of shell and coil heat exchanger with different coil curvatures. Journal of Thermal Science and Engineering Applications, 7, 041002.

SIDIK, C., AZWADI, N. & RAAD ABDULWAHAB, M. Numerical investigation of turbulent magnetic nanofluid Flow inside straight channels. Applied Mechanics and Materials, 2016. Trans Tech Publ, 382-391.

ARANI, A. A. A., ABEROUMAND, H., JAFARIMOGHADDAM, A. & ABEROUMAND, S. 2017. Mixed convection heat transfer: an experimental study on Cu/heat transfer oil nanofluids inside annular tube. Heat and Mass Transfer, 53, 2875-2884.

KUMAR, N. R., BHRAMARA, P., ADDIS, B. M., SUNDAR, L. S., SINGH, M. K. & SOUSA, A. C. 2017. Heat transfer, friction factor and effectiveness analysis of Fe3O4/water nanofluid flow in a double pipe heat exchanger with return bend. International Communications in Heat and Mass Transfer, 81, 155-163.

ETGHANI, M. M. & BABOLI, S. A. H. 2017. Numerical investigation and optimization of heat transfer and exergy loss in shell and helical tube heat exchanger. Applied Thermal Engineering, 121, 294-301.

WEN, J., HUANG, H., FU, Y., XU, G. & ZHU, K. 2017. Heat transfer performance of aviation kerosene RP-3 flowing in a vertical helical tube at supercritical pressure. Applied Thermal Engineering, 121, 853-862.

PANAHI, D. & ZAMZAMIAN, K. 2017. Heat transfer enhancement of shell-and-coiled tube heat exchanger utilizing helical wire turbulator. Applied Thermal Engineering, 115, 607-615.

ZHANG, C., WANG, D., XIANG, S., HAN, Y. & PENG, X. 2017. Numerical investigation of heat transfer and pressure drop in helically coiled tube with spherical corrugation. International Journal of Heat and Mass Transfer, 113, 332-341.

FU, Y., WEN, J., TAO, Z., XU, G. & HUANG, H. 2017. Surface coking deposition influences on flow and heat transfer of supercritical hydrocarbon fuel in helical tubes. Experimental Thermal and Fluid Science, 85, 257-265.

PALVE, V. M. & KALE, R. V. 2015. Computational analysis of helical coil Heat exchanger for Temperature and Pressure drop. International research journal of engineering and technology, vol102.

PILLA, T. S., SUNKARI, P. K. G., PADMANABHUNI, S. L., NAIR, S. S. & DONDAPATI, R. S. 2017. Experimental evaluation Mechanical performance of the compressor with mixed refrigerants R-290 and R-600a. Energy Procedia, 109, 113-121.

ŠALIĆ, A., TUŠEK, A. & ZELIĆ, B. 2012. Application of microreactors in medicine and biomedicine. Journal of Applied Biomedicine, 10, 137-153.

DONDAPATI, R. S., SAINI, V., KISHORE, N. & PRASAD, V. 2015. Enhancement of performance parameters of transformer using nanofluids. Int J Sci Eng Technol, 4

TURKYILMAZOGLU, M. 2016. Performance of direct absorption solar collector with nanofluid mixture. Energy Conversion and Management, 114, 1-10.

DONDAPATI, R. S., SAINI, V., VERMA, K. N. & USURUMARTI, P. R. 2017. Computational prediction of pressure drop and heat transfer with cryogen based nanofluids to be used in micro-heat exchangers. International Journal of Mechanical Sciences, 130, 133-142.

KANDLIKAR, S. G., COLIN, S., PELES, Y., GARIMELLA, S., PEASE, R. F., BRANDNER, J. J. & TUCKERMAN, D. B. 2013. Heat transfer in microchannels—2012 status and research needs. Journal of Heat Transfer, 135, 091001.

SIVAKUMAR, A., ALAGUMURTHI, N. & SENTHILVELAN, T. 2014. Experimental investigation in thermal conductivity of CuO and ethylene glycol nanofluid in serpentine shaped microchannel. International Journal of Engineering Science and Technology, 6, 430.

EBRAHIMI, A., RIKHTEGAR, F., SABAGHAN, A. & ROOHI, E. 2016. Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids. Energy, 101, 190-201.

AKBARI, O. A., SAFAEI, M. R., GOODARZI, M., AKBAR, N. S., ZARRINGHALAM, M., SHABANI, G. A. S. & DAHARI, M. 2016. A modified two-phase mixture model of nanofluid flow and heat transfer in a 3-D curved microtube. Advanced Powder Technology, 27, 2175-2185

BEHNAMPOUR, A., AKBARI, O. A., SAFAEI, M. R., GHAVAMI, M., MARZBAN, A., SHABANI, G. A. S. & MASHAYEKHI, R. 2017. Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs. Physica E: Low-dimensional Systems and Nanostructures, 91, 15-31

SAJADIFAR, S. A., KARIMIPOUR, A. & TOGHRAIE, D. 2017. Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions. European Journal of Mechanics-B/Fluids, 61, 25-32.

KARIMZADEHKHOUEI, M., SADAGHIANI, A. K., MOTEZAKKER, A. R., AKGÖNÜL, S., OZBEY, A., ŞENDUR, K., MENGÜÇ, M. P. & KOŞAR, A. 2018. Experimental and Numerical Investigation of Inlet Temperature Effect on Convective Heat Transfer of γ-Al2O3/Water Nanofluid Flows in Microtubes. Heat Transfer Engineering, 1-15.

RAHIMI GHEYNANI, A., ALI AKBARI, O., ZARRINGHALAM, M., AHMADI SHEIKH SHABANI, G., ALNAQI, A. A., GOODARZI, M. & TOGHRAIE, D. 2018. Investigating the effect of nanoparticles diameter on turbulent flow and heat transfer properties of non-Newtonian carboxymethyl cellulose/CuO fluid in a microtube. International Journal of Numerical Methods for Heat & Fluid Flow.

Chamkha, A.J., Molana, M., Rahnama, A., Ghadami, F. 2018. On the nanofluids applications in microchannels: a comprehensive review. Powder Technology, 332, 287-322

Downloads

Published

2021-02-28

Issue

Section

Science and Engineering

How to Cite

HEAT TRANSFER ENHANCEMENT USING PASSIVE TECHNIQUE: REVIEW. (2021). Jurnal Teknologi, 83(2), 151-162. https://doi.org/10.11113/jurnalteknologi.v83.14546