GLYCEROLYSIS USING KF/CAO-MGO CATALYST: OPTIMISATION AND REACTION KINETICS

Authors

  • Luqman Buchori Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, SH Tembalang, Semarang, 50275, Indonesia http://orcid.org/0000-0001-5138-8031
  • Mohammad Djaeni Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, SH Tembalang, Semarang, 50275, Indonesia
  • R. Ratnawati Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, SH Tembalang, Semarang, 50275, Indonesia
  • Diah Susetyo Retnowati Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, SH Tembalang, Semarang, 50275, Indonesia
  • H. Hadiyanto Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, SH Tembalang, Semarang, 50275, Indonesia
  • Didi Dwi Anggoro Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, SH Tembalang, Semarang, 50275, Indonesia

DOI:

https://doi.org/10.11113/jt.v82.14585

Keywords:

Glycerolysis, monoglyceride, kinetics, KF/CaO-MgO catalyst, RSM optimisation

Abstract

Monoglycerides can be produced through glycerolysis using a heterogeneous catalyst. The purpose of this study is to analyse the optimum conditions for the production of monoglycerides from glycerol and cooking oil using KF/CaO-MgO base catalysts and to investigate the kinetics of the monoglyceride glycerolysis reaction. The response surface method (RSM) was used to determine the favourable conditions by varying the catalyst amount (X1) between 0.1, 0.2 and 0.3% (w/w); the reaction temperature (X2) between 210, 220 and 230°C and reaction time (X3) between 2, 3 and 4 hours. Gas chromatography-mass spectrometry (GC-MS) was used to determine the monoglycerides, while catalysts were characterised by X-ray diffraction (XRD) and the Brunauer-Emmett-Teller method (BET). The results showed that, among the three factors examined, temperature shows the most control over this glycerolysis reaction. The most favourable conditions are X1 = 0.19% (w/w), X2 = 208.37°C and X3 = 3.20 hours, which provide a monoglyceride yield of 41.58%. The constants for the reaction kinetics of the monoglyceride formation, k1 and k2 are 1.04189 and 0.88965 hour-1, respectively.

Author Biographies

  • Luqman Buchori, Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, SH Tembalang, Semarang, 50275, Indonesia
    Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
  • Mohammad Djaeni, Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, SH Tembalang, Semarang, 50275, Indonesia
    Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
  • R. Ratnawati, Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, SH Tembalang, Semarang, 50275, Indonesia
    Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
  • Diah Susetyo Retnowati, Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, SH Tembalang, Semarang, 50275, Indonesia
    Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
  • H. Hadiyanto, Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, SH Tembalang, Semarang, 50275, Indonesia
    Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
  • Didi Dwi Anggoro, Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, SH Tembalang, Semarang, 50275, Indonesia
    Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia

References

Wang, F. C. and Marangoni, A. G. 2016. Advances in the Application of Food Emulsifier α-Gel Phases: Saturated Monoglycerides, Polyglycerol Fatty Acid Esters, and their Derivatives. Journal of Colloid and Interface Science. 483: 394-403.

DOI: http://dx.doi.org/10.1016/j.jcis.2016.08.012.

Naik, M. K., Naik, S. N., and Mohanty, S. 2014. Enzymatic Glycerolysis for Conversion of Sunflower Oil to Food Based Emulsifiers. Catalysis Today. 237: 145-149.

DOI: http://dx.doi.org/10.1016/j.cattod.2013.11.005.

Ferretti, C. A., Fuente, S., Ferullo, R., Castellani, N., Apesteguía, C. R., and Di Cosimo, J. I. 2012. Monoglyceride Synthesis by Glycerolysis of Methyl Oleate on MgO: Catalytic and DFT Study of the Active Site. Applied Catalysis A: General. 413-414: 322-331.

DOI: http://dx.doi.org/10.1016/j.apcata.2011.11.025.

Belelli, P. G., Ferretti, C. A., Apesteguía, C. R., Ferullo, R. M., and Di Cosimo, J. I. 2015. Glycerolysis of Methyl Oleate on MgO: Experimental and Theoretical Study of the Reaction Selectivity. Journal of Catalysis. 323: 132-144.

DOI: http://dx.doi.org/10.1016/j.jcat.2015.01.001.

Miao, S. and Lin, D. 2019. Monoglycerides: Categories, Structures, Properties, Preparations, and Applications in the Food Industry. Encyclopedia of Food Chemistry. 155-163.

DOI: http://dx.doi.org/10.1016/b978-0-08-100596-5.21595-3.

Freitas, L., Paula, A. V., dos Santos, J. C., Zanin, G. M., and de Castro, H. F. 2010. Enzymatic Synthesis of Monoglycerides by Esterification Reaction Using Penicillium camembertii Lipase Immobilized on Epoxy SiO2-PVA Composite. Journal of Molecular Catalysis B: Enzymatic. 65(1-4): 87-90.

DOI: http://dx.doi.org/10.1016/j.molcatb.2009.12.009.

Siri-nguan, N. and Ngamcharussrivichai, C. 2016. Alkoxide-intercalated Mg–Al Layered Double Hydroxides as Selective Catalysts for the Synthesis of Monoglycerides. Reaction Kinetics, Mechanisms and Catalysis. 119(1): 273-289.

DOI: http://dx.doi.org/10.1007/s11144-016-1018-5.

Buchori, L., Istadi, I., and Purwanto, P. 2016. Advanced Chemical Reactor Technologies for Biodiesel Production from Vegetable Oils - A Review. Bulletin of Chemical Reaction Engineering & Catalysis. 11(3): 406-430.

DOI: http://dx.doi.org/10.9767/bcrec.11.3.490.406-430.

Kore, P. P., Kachare, S. D., Kshirsagar, S. S., and Oswal, R. J. 2012. Base Catalyzed Glycerolysis of Ethyl Acetate. Organic Chemistry Current Research. 1(4): 108-111.

DOI : http://dx.doi.org/10.4172/2161-0401.1000108.

Satriana, Arpi, N., Lubis, Y. M., Adisalamun, Supardan, M. D., and Mustapha, W. A. W. 2016. Diacylglycerol-enriched Oil Production Using Chemical Glycerolysis. Europian Journal of Lipid Science and Technology. 118(12): 1880-1890.

DOI : http://dx.doi.org/10.1002/ejlt.201500489.

Schulz, G. A. S., da Silveira, K. C., Libardi, D. B., Peralba, M. do. C. R., and Samios D. 2011. Synthesis and Characterization of Mono-acylglycerols through the Glycerolysis of Methyl Esters Obtained from Linseed Oil. Europian Journal of Lipid Science and Technology. 113(12): 1533-1540.

DOI: http://dx.doi.org/10.1002/ejlt.201100079.

Taufiq-Yap, Y. H., Lee, H. V., Hussein, M. Z., and Yunus, R. 2011. Calcium-based Mixed Oxide Catalysts for Methanolysis of Jatropha Curcas Oil to Biodiesel. Biomass and Bioenergy. 35(2): 827-834.

DOI: http://dx.doi.org/10.1016/j.biombioe.2010.11.011.

Hoo, P. and Abdullah, A. Z. 2016. Monolaurin Yield Optimization in Selective Esterification of Glycerol with Lauric Acid over Post Impregnated HPW/SBA-15 Catalyst. Korean Journal of Chemical Engineering. 33(4): 1200-1210.

DOI: http://dx.doi.org/10.1007/s11814-015-0246-0.

Temelli, F., King, J. W., and List, G. R. 1996. Conversion of Oils to Monoglycerides by Glycerolysis in Supercritical Carbon Dioxide Media. Journal of the American Oil Chemists' Society. 73(6): 699-706.

DOI: http://dx.doi.org/10.1007/BF02517943.

Anggoro, D. D., Oktavianty, H., Kurniawan, B. P., and Daud, R. 2019. Optimization of Glycerol Monolaurate (GML) Synthesis from Glycerol and Lauric Acid Using Dealuminated Zeolite Y Catalyst. Jurnal Teknologi. 81(4): 133-141.

DOI: http://dx.doi.org/10.11113/jt.v81.13511.

Yang, F., Xiang, W., Sun, X., Wu, H., Li, T., and Long, L. 2014. A Novel Lipid Extraction Method from Wet Microalga Picochlorum sp. at Room Temperature. Marine Drugs. 12(3): 1258-1270.

DOI: http://dx.doi.org/10.3390/md12031258.

Yetilmezsoy, K., Demirel, S., and Vanderbei, R. J. 2009. Response Surface Modeling of Pb(II) Removal from Aqueous Solution by Pistacia vera L.: Box-Behnken Experimental Design. Journal of Hazardous Materials. 171(1-3): 551-562.

DOI: http://dx.doi.org/10.1016/j.jhazmat.2009.06.035.

Sangeetha, V., Sivakumar, V., Sudha, A., and Devi, K. P. 2014. Optimization of Process Parameters for COD Removal by Coagulation Treatment Using Box–Behnken Design. International Journal of Engineering and Technology. 6(2): 1053-1058.

Sonntag, N. O. V. 1983. Glycerolysis of Fats and Methyl Esters-Status, Review and Critique. Journal of the American Oil Chemists' Society. 60(7): 1245-1249.

DOI: http://dx.doi.org/10.1007/BF02634442.

Hussain, K., Ismail, F., and Senu, N. 2016. Solving Directly Special Fourth-order Ordinary Differential Equations Using Runge–Kutta Type Method. Journal of Computational and Applied Mathematics. 306: 179-199.

DOI: http://dx.doi.org/10.1016/j.cam.2016.04.002.

Xuan, J., Zheng, X., and Hu, H. 2012. Active Sites of Supported KF Catalysts for Transesterification. Catalysis Communications. 28: 124-127.

DOI: http://dx.doi.org/10.1016/j.catcom.2012.08.032.

Fregolente, L. V., Batistella, C. B., Filho, R. M., and Maciel, M. R. W. 2005. Response Surface Methodology Applied to Optimization of Distilled Monoglycerides Production. Journal of the American Oil Chemists' Society. 82(9): 673-678.

DOI: http://dx.doi.org/10.1007/s11746-005-1127-9.

Istadi, 1. and Amin, N. A. S. 2006. Optimization of Process Parameters and Catalyst Compositions in Carbon Dioxide Oxidative Coupling of Methane over CaO–MnO/CeO2 Catalyst Using Response Surface Methodology. Fuel Processing Technology. 87: 449-459.

DOI: http://dx.doi.org/10.1016/j.fuproc.2005.11.004.

Mustafa, M. N., Shafie, S., Wahid, M. H., and Sulaiman, Y. 2019. Optimization of Power Conversion Efficiency of Polyvinyl-Alcohol/Titanium Dioxide Compact Layer Using Response Surface Methodology/Central Composite Design. Solar Energy. 183: 689-696.

DOI: http://dx.doi.org/10.1016/j.solener.2019.03.074.

Montgomery, D. C. 2001. Statis and Analysis of Experiments. Fifth Eds. United States of America: John Wiley & Sons, Inc.

Feuge, R. O. and Bailey, A. E. 1946. Modification of Vegetable Oils: VI. The Practical Preparation of Mono- and Diglycerides. Oil & Soap. 23(8): 259-264.

DOI: http://dx.doi.org/10.1007/BF02696133.

Downloads

Published

2020-08-10

Issue

Section

Science and Engineering

How to Cite

GLYCEROLYSIS USING KF/CAO-MGO CATALYST: OPTIMISATION AND REACTION KINETICS. (2020). Jurnal Teknologi (Sciences & Engineering), 82(5). https://doi.org/10.11113/jt.v82.14585