MODIFICATION OF NANO HYBRID PES-ZNO MEMBRANE USING UV IRRADIATION FOR BIODIESEL PURIFICATION

Authors

  • Tutuk Djoko Kusworo Chemical Engineering Department, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia Membrane Research Center (Mer-C), Universitas Diponegoro, Semarang, Indonesia http://orcid.org/0000-0001-8343-8435
  • Andri Cahyo Kumoro Chemical Engineering Department, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia http://orcid.org/0000-0001-9685-5406
  • Muhammad Ainul Yaqin Chemical Engineering Department, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia
  • Nurul Fatiyah Chemical Engineering Department, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia
  • Dani Puji Utomo Chemical Engineering Department, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia http://orcid.org/0000-0002-9018-0185

DOI:

https://doi.org/10.11113/jt.v82.14682

Keywords:

Purification, Biodiesel, Membrane, PES-ZnO, UV irradiation

Abstract

The purification of biodiesel is one of the crucial processes involved in biodiesel production. This study aims to examine the effect of the polymer composition, nano-ZnO loading, and UV irradiation on the performance of membranes for biodiesel purification. The membranes were fabricated with the polyethersulfone composition of 17, 18, and 20 wt%. The compositions of nano ZnO were varied at 1.5, 2, and 2.5 wt%, while the duration of UV irradiation was varied for 0.5, 1, and 1.5 minutes. The results indicate that the compositions of PES, nano ZnO, and UV irradiation affected the performance of the membrane. The best membrane performance was achieved when the membrane was produced using PES 17 wt%, nano ZnO 1.5 wt% involving irradiation UV light for 1 minute. The fabricated membrane exhibits 3 hours flux profile stability and 61.5% glycerol rejection.

References

Dudley, B. 2018. BP Statistical Review of World Energy. BP Statistical Review, London, UK, accessed Dec, 6, 2019. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/news-and-insights/speeches/bp-stats-review-2019-bob-dudley-speech.pdf.

Brennan, L., & Owende, P. 2010. Biofuels from Microalgae - A Review of Technologies for Production, Processing, and Extraction of Biofuels and Co-products. Renewable Sustain Energy. 14(2): 557-577.

DOI: https://doi.org/10.1016/j.rser.2009.10.009.

Makertihartha, I. G. B. N., Khoiruddin, K., Nabu, E. B. P., Aryanti, P. T. P., & Wenten, I. G. 2019. Simultaneous Methyl Ester Production and Carotene Recovery from Crude Palm Oil Using Membrane Reactor. Jurnal Teknologi. 81(2): 27-38. DOI: https://doi.org/10.11113/jt.v81.12539.

Medeiros, A. M., Santos, Ê. R., Azevedo, S. H., Jesus, A. A., Oliveira, H. N., & Sousa, E. M. 2018. Chemical Interesterification of Cotton Oil with Methyl Acetate Assisted by Ultrasound for Biodiesel Production. Brazilian Journal of Chemical Engineering. 35(3): 1005-1018.

DOI: http://dx.doi.org/10.1590/0104-6632.20180353s20170001.

Ma, F., & Hanna, M. A. 1999. Biodiesel Production; A Review. Bioresource Technology. 70(1): 1-15.

DOI: https://doi.org/10.1016/S0960-8524(99)00025-5.

Alves, M., Cavalcanti, I., Resende, M., Carsodo, V., & Reis, I. 2016. Biodiesel Dry Purification with Sugarcane Bagasse. Industrial Corps and Products. 89: 119-127. DOI: https://doi.org/10.1016/j.indcrop.2016.05.005.

Wall, J., Gerpen, J. V., & Thompson, J. 2011. Soap and Glycerin Removal from Biodiesel using Waterless Processes. Transaction of the Asabe. 54(2): 535-541.

DOI: https://doi.org/10.13031/2013.36456

Escorsim, A., Cordeiro, C., Ramos, L., Ndiaye, P., Kanda, L., & Corazza, M. 2015. Assessment of Biodiesel Purification Using CO2 at High Pressures. Journal of Supercritical Fluids. 96: 68-76.

DOI: https://doi.org/10.1016/j.supflu.2014.08.013.

Alves, M., Nascimento, S., Pereira, I., Martins, M., Cardoso, V., & Reis, M. 2013. Biodiesel Purification Using Micro and Ultrafiltration Membranes. Renewable Energy. 58: 15-20. DOI: https://doi.org/10.1016/j.renene.2013.02.035.

Atadashi, I. M. 2015. Purification of Crude Biodiesel using Dry Washing. Alexandria Engineering Journal. 54(4): 1265-1272. DOI: https://doi.org/10.1016/j.aej.2015.08.005.

Lai, G. S., Lau, W. J., Goh, P. S., Tan, Y. H., Ismail, A. F., Zaik, U., Basri, H., & Gohari, R. J. 2017. Preparation and Characterization of Superhydrophilic Nanocomposite Ultrafiltration Membranes for Treatment of Highly Concentrated Oil-in-water Emulsion. Jurnal Teknologi. 79(1-2): 53-58.

DOI: https://doi.org/10.11113/jt.v79.10437.

Shen, L., Bian, X., Lu, X., Shi, L., Liu, Z., Chen, L., & Fan, K. 2012. Preparation and Characterization of ZnO/polyethersulfone (PES) Hybrid Membranes. Desalinaion. 293: 21-29.

DOI: https://doi.org/10.1016/j.desal.2012.02.019.

Pisarello, M. L., Dalla Costa, B. O., Veizaga, N. S., & Querini, C. A. 2010. Volumetric Method for Free and Total Glycerin Determination in Biodiesel. Industrial & Engineering Chemistry Research. 49(19): 8935-8941.

DOI: https://doi.org/10.1021/ie100725f

Liao, C., Yu, P., Zhao, J., Wang, L., & Luo, Y. 2011. Preparation and Characterization of NaY/PVDF Hybrid Ultrafiltration Membranes Containing Silver Ions as Antibacterial Materials. Desalination. 272(1-3): 59-65.

DOI: https://doi.org/10.1016/j.desal.2010.12.048.

Panda, Swapna Rekha; De,Sirshend. 2014. Preparation Characterization and Performance of ZnCl2 Incorporated Polysulfone (PSf)/polyethylene Glycol(PEG) Blend Low Pressure Nanofiltration Membranes. Desalination. 347: 52-65. DOI: https://doi.org/10.1016/j.desal.2014.05.030.

Nasrollahi, N., Vatanpour, V., Aber, S., & Mahmoodi, N. M. 2018. Preparation and Characterization of a Novel Polyethersulfone (PES) Ultrafiltration Membrane Modified with a CuO/ZnO Nanocomposite to Improve Permeability and Antifouling Properties. Separation and Purification Technology. 192: 369-382.

DOI: https://doi.org/10.1016/j.seppur.2017.10.034.

Kusworo, T. D., Qudratun, & Utomo, D. P. 2017. Performance Evaluation of Double Stage Process Using Nano Hybrid PES/SiO2-PES Membrane and PES/ZnO-PES Membranes for Oily Waste Water Treatment to Clean Water. Journal of Enviromental Chemical Engineering. 5: 6077-6086.

DOI: https://doi.org/10.1016/j.jece.2017.11.044.

Porter, M. C. 1999. Handbook of Industrial Membrane Technology. Noyes Publicaions: New Jersey.

Mulder, M. 1996. Basic Principles of Membrane Technology. Kluwer Academic Publishers: Netherlands.

Lin, J., Ye, W., Zhong, K., Shen, J., Jullok, N., Sotto, A., & Bruggen, B. 2016. Enhancement of PES Membrane Doped by Monodisperse Stober Silica for Water Treatment. Chemical Engineering and Processing: Process Intensification. 107: 194-205.

DOI: https://doi.org/10.1016/j.cep.2015.03.011

Shen, Y., & Lua, A. 2012. Preparation And Characterization Ofmixed Matrix Membranes based on PVDF and Three Inorganicfillers (Fumed Nonporous Silica, Zeolite 4A and Mesoporous MCM-41) for Gas Separation. Chemical Engineering Journal. 192: 201-210.

DOI: https://doi.org/10.1016/j.cej.2012.03.066.

Nikooe, N., & Saljoughi, E. 2017. Preparation and Characterization of Novel PVDF Nanofiltration Membranes with Hydrophilic Property for Filtration of Dye Aqueous Solution. Applied Surface Science. 413: 41-49.

DOI: https://doi.org/10.1016/j.apsusc.2017.04.029.

Chen, X., Wu, S., & Zhou, J. 2013. Influence of Porosity on Compressive and Tensile Strength of Cement Mortar. Construction and Building Material. 40: 869-874.

DOI: https://doi.org/10.1016/j.conbuildmat.2012.11.072

Kusworo, T. D., Soetrisnanto, D., Aryanti, N., Utomo, D. P., Qudratun, Tambunan, V. D., & Simanjuntak, N. R. 2018. Evaluation of Integrated Modifies Nanohybrid Polyethersulfone-ZnO Membrane with Single Stage and Double Stage System For Produced Water Treatment Into Clean Water. Journal of Water Process Engineering. 23: 239-249. DOI: https://doi.org/10.1016/j.jwpe.2018.04.002.

Rajabi, H., Ghaemi, N., Madaeni, S. S., Daraei, P., Astinchap, B., Zinadini, S., & Razavizadeh, S. H. 2015. Nano-ZnO Embedded Mixed Matrix Polyethersulfone (PES) Membrane: Influence of Nanofiller Shape on Characterization and Fouling Resistance. Applied Surface Science. 349: 2-44.

DOI: https://doi.org/10.1016/j.apsusc.2015.04.214

Kusworo, T. D., Aryanti, N., Anggita, R. A., Setyorini, T. A. D., & Utomo, D. P. 2017. Surface Modification and Performance Enhancement of Polyethersulfone (PES) Membrane Using Combination of Ultra Violet Irradiation and Thermal Annealing for Produced Water Treatment. Journal of Environmental Science and Technology. 10(1): 35-43. DOI: https://doi.org/ 10.3923/jest.2017.35.43.

Pavia, D., Lampman, G., & Kriz, G. 2001. Introduction To Spectroscopy: A Guide for Students of Organic Chemistry. Department of Chemistry Western Washington University, Washington.

Susanto, H., & Ulbricht, M. 2007. Photografted Thin Polymer Hydrogel Layers on PES Ultrafiltration Membranes: Characterization, Stability, and Influence on Separation Performance. Langmuir. 23(14): 7818-7830.

DOI: https://doi.org/10.1021/la700579x.

Kusworo, T. D., Aryanti, N., & Utomo, D. P. 2018. Oilfield Produced Water Treatment to Clean Water Using Integrated Activated Carbon-bentonite Adsorbent and Double Stages Membrane Process. Chemical Engineering Journal. 347: 462-471.

DOI: https://doi.org/10.1016/j.cej.2018.04.136.

Konruang, S., Chittrakarn, T., & Sirijarukul, S. 2014. Surface Modification of Asymmetric Polysulfone Membrane by UV Irradiation. Jurnal Teknologi (Sciences & Engineering). 70(2): 55-60. DOI: https://doi.org/10.11113/jt.v70.3435.

Downloads

Published

2020-08-13

Issue

Section

Science and Engineering

How to Cite

MODIFICATION OF NANO HYBRID PES-ZNO MEMBRANE USING UV IRRADIATION FOR BIODIESEL PURIFICATION. (2020). Jurnal Teknologi, 82(5). https://doi.org/10.11113/jt.v82.14682