MULTITEMPORAL HISTOGRAM MATCHING – A NEW APPROACH OF MOSS AND LICHEN CHANGE DETECTION FROM LANDSAT IN DATA-POOR ANTARCTICA ENVIRONMENTS

Authors

  • Mohammad Shawkat Hossain Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mazlan Hashim Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v82.14701

Keywords:

Snow vegetation, multi-temporal, multispectral, Antarctica Peninsula, satellite, climate change

Abstract

Mosses and lichens are important components of Antarctic ecosystems. Maps of these vegetation are needed to improve our understanding of ecosystem dynamics. This requires species distribution to be mapped repeatedly over time, a critical task that becomes extremely challenging in data-poor Antarctic regions, where the lack of field data, logistics, coupled with scarcity of cloud free, quality multitemporal Landsat imagery are major intrinsic constraints to time-series analysis for change detection. This study firstly analyzes the spectral curves of moss and lichen generated by field-based spectroradiometer and then proposes an innovative histogram matching technique where historical Landsat data is modified such that its histogram matches that of present (reference) dataset. This has made it possible to mapping multitemporal Landsat data in the Antarctic Peninsula. The results demonstrate an overall accuracy of 90.5%. Mapping of Arctic vegetation facilitated by histogram matching of Landsat image, according to the results, seems to be an advisable image processing technique for application in a data-poor context.

References

Convey, P. 2013. Antarctic Ecosystems. Encyclopedia of Biodiversity. Second edi. 179-188.

Meredith, M. P., and King, J. C. 2005. Rapid Climate Change in the Ocean West of the Antarctic Peninsula during the Second Half of the 20th Century. Geophysical Research Letters. 32(19): L19604.

DOI: http://dx.doi.org/10.1029/2005GL024042.

Gutt, J. et al. 2012. Correlative and Dynamic Species Distribution Modelling for Ecological Predictions in the Antarctic: A Cross-disciplinary Concept. Polar Research. 31(1): 11091.

DOI: https://doi.org/10.3402/polar.v31i0.11091.

Smale, D. A., and Barnes, D. K. A. 2008. Likely Responses of the Antarctic Benthos to Climate-related Changes in Physical Disturbance During The 21st Century, Based Primarily on Evidence from the West Antarctic Peninsula Region. Ecography. 31(3): 289-305.

DOI: http://dx.doi.org/10.1111/j.0906-7590.2008.05456.x.

Convey, P. et al. 2014. The Spatial Structure of Antarctic Biodiversity. Ecological Monographs. 84(2): 203-244.

DOI: http://dx.doi.org/10.1890/12-2216.1.

Convey, P. et al. 2009. Exploring Biological Constraints on the Glacial History of Antarctica. Quaternary Science Reviews. 28(27-28): 3035-3048.

DOI: http://dx.doi.org/10.1016/j.quascirev.2009.08.015.

Peck, L. S., Convey, P., and Barnes, D. K. A. 2006. Environmental Constraints on Life Histories in Antarctic Ecosystems: Tempos, Timings and Predictability. Biological Reviews. 81: 75-109.

DOI: http://dx.doi.org/10.1017/S1464793105006871.

Frenot, Y. et al. 2005. Biological Invasions in the Antarctic: Extent, Impacts and Implications. Biological Reviews. 80: 45-72.

DOI: http://dx.doi.org/10.1017/S1464793104006542.

Hughes, K. A., Ireland, L. C., Convey, P., and Fleming, A. H. 2016. Assessing the Effectiveness of Specially Protected Areas for Conservation of Antarctica’s Botanical Diversity. Conservation Biology. 30(1): 113-20.

DOI: http://dx.doi.org/10.1111/cobi.12592.

Barták, M., Váczi, P., Stachoň, Z., and Kubešová, S. 2015. Vegetation Mapping Of Moss-dominated Areas of Northern Part of James Ross Island (Antarctica) and a Suggestion of Protective Measures. Czech Polar Reports. 5(1): 75-87.

DOI: http://dx.doi.org/10.5817/CPR2015-1-8.

Hossain, M. S., Bujang, J. S., Zakaria, M. H., and Hashim, M. 2015. Application of Landsat Images to Seagrass Areal Cover Change Analysis for Lawas, Terengganu and Kelantan of Malaysia. Continental Shelf Research. 110: 124-148.

DOI: http://dx.doi.org/10.1016/j.csr.2015.10.009.

Hossain, M. S., and Hashim, M. 2019. Potential of Earth Observation (EO) Technologies for Seagrass Ecosystem Service Assessments. International Journal of Applied Earth Observation and Geoinformation. 77: 15-29.

DOI: https://doi.org/10.1016/j.jag.2018.12.009.

Hossain, M. S., Bujang, J. S., Zakaria, M. H., and Hashim, M. 2015. The Application of Remote Sensing to Seagrass Ecosystems: An Overview and Future Research Prospects. International Journal of Remote Sensing. 36(1): 61-114.

DOI: https://doi.org/10.1080/01431161.2014.990649.

Pour, A. B., Hashim, M., Park, Y.,, and Hong, J. K. 2018. Mapping Alteration Mineral Zones and Lithological Units in Antarctic Regions Using Spectral Bands of ASTER Remote Sensing Data. Geocarto International. 33(12): 1281-1306.

DOI: 10.1080/10106049.2017.1347207.

Bindschadler, R. et al. 2008. The Landsat Image Mosaic of Antarctica. Remote Sensing of Environment. 112(12): 4214-4226.

DOI: https://doi.org/10.1016/j.rse.2008.07.006.

Tucker, C. J. 1979. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sensing of Environment. 8(2): 127-150.

DOI: https://doi.org/10.1016/0034-4257(79)90013-0.

Beck, P. S. A., and Goetz, S. J. 2011. Satellite Observations of High Northern Latitude Vegetation Productivity Changes Between 1982 and 2008: Ecological Variability and Regional Differences. Environmental Research Letters. 6(4): 45501.

Gamon, J. A., Huemmrich, K. F., Stone, R. S., and Tweedie, C. E. 2013. Spatial and Temporal Variation in Primary Productivity (NDVI) of Coastal Alaskan Tundra: Decreased Vegetation Growth Following Earlier Snowmelt. Remote Sensing of Environment. 129: 144-153.

DOI: http://dx.doi.org/10.1016/j.rse.2012.10.030.

Kim, Y., Kimball, J. S., Zhang, K., and McDonald, K. C. 2012. Satellite Detection of Increasing Northern Hemisphere Non-frozen Seasons from 1979 to 2008: Implications for Regional Vegetation Growth. Remote Sensing of Environment. 121: 472-487.

DOI: http://dx.doi.org/10.1016/j.rse.2012.02.014.

Greaves, H. E. et al. 2016. High-resolution Mapping of Aboveground Shrub Biomass in Arctic Tundra Using Airborne Lidar and Imagery. Remote Sensing of Environment. 184: 361-373

DOI: http://dx.doi.org/10.1016/j.rse.2016.07.026.

Hashim, M., Misbari. S., Reba, M. N., Abdul-Wahab, M. F., Pour, A. B., Said, M. F. M., Omar, A. H., and Soeed, K. 2016. Mapping Snow-algae in Antarctic Peninsula with Multi-Temporal Satellite Remote Sensing Data. Procs IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Volume 2016-November, 1 November 2016, Article number 7730360, 5221-5224; Beijing; China; 10 July 2016 through 15 July 2016; Category number CFP16IGA-ART; Code 124694

DOI: 10.1109/IGARSS.2016.7730360.

Bakhmutov, V., and Shpyra, V. 2011. Palaeomagnetism of Late Cretaceous-Paleocene Igneous Rocks from the Western Part of the Antarctic Peninsula (Argentine Islands Archipelago). Geological Quarterly. 55(4): 285-300.

Fowbert, J. A., and Smith, R. I. L. 1994. Rapid Population Increases in Native Vascular Plants in the Argentine Islands, Antarctic Peninsula. Arctic, Antarctic, and Alpine Research. 26(3): 290-296.

DOI: http://dx.doi.org/10.2307/1551941.

Vaughan, D. G. et al. 2003. Recent Rapid Regional Climate Warming on the Antarctic Peninsula. Climatic Change. 60(3): 243-274.

DOI: http://dx.doi.org/10.1023/A:1026021217991.

USGS. 2015. Using the USGS Landsat 8 Product. Landsat Missions.

Armstrong, R. A. 1993. Remote Sensing of Submerged Vegetation Canopies for Biomass Estimation. International Journal of Remote Sensing. 14(3): 621-627.

DOI: http://dx.doi.org/10.1080/01431169308904363.

Fretwell, P., Convey, P., Fleming, A. H., Peat, H., and Hughes, K. 2011. Detecting and Mapping Vegetation Distribution on the Antarctic Peninsula from Remote Sensing Data. Polar Biology. 34: 273-281.

DOI: http://dx.doi.org/10.1007/s00300-010-0880-2.

Petzold, D. E., and Goward, S. N. 1988. Reflectance Spectra of Subarctic Lichens. Remote Sensing of Environment. 24(3): 481-492.

DOI: https://doi.org/10.1016/0034-4257(88)90020-X.

Hossain, M. S., Bujang, J. S., Zakaria, M. H., and Hashim, M. 2016. Marine and Human Habitat Mapping for the Coral Triangle Initiative Region of Sabah using Landsat and Google Earth imagery. Marine Policy. 72: 176-191.

DOI: https://doi.org/10.1016/j.marpol.2016.07.003.

Selkirk, P. M. et al. 1997. Genetic Variation In Antarctic Populations of the Moss Sarconeurum Glaciale. Polar Biology. 18: 344-350.

DOI: https://doi.org/10.1007/s003000050198.

Zhang, X. et al. 2003. Monitoring Vegetation Phenology using MODIS. Remote Sensing of Environment. 84(3): 471-475.

DOI: http://dx.doi.org/10.1016/S0034-4257(02)00135-9.

Downloads

Published

2020-08-19

Issue

Section

Science and Engineering

How to Cite

MULTITEMPORAL HISTOGRAM MATCHING – A NEW APPROACH OF MOSS AND LICHEN CHANGE DETECTION FROM LANDSAT IN DATA-POOR ANTARCTICA ENVIRONMENTS. (2020). Jurnal Teknologi (Sciences & Engineering), 82(5). https://doi.org/10.11113/jt.v82.14701